Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 12: 222-231, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33728240

RESUMO

A dark-field scanning transmission ion microscopy detector was designed for the helium ion microscope. The detection principle is based on a secondary electron conversion holder with an exchangeable aperture strip allowing its acceptance angle to be tuned from 3 to 98 mrad. The contrast mechanism and performance were investigated using freestanding nanometer-thin carbon membranes. The results demonstrate that the detector can be optimized either for most efficient signal collection or for maximum image contrast. The designed setup allows for the imaging of thin low-density materials that otherwise provide little signal or contrast and for a clear end-point detection in the fabrication of nanopores. In addition, the detector is able to determine the thickness of membranes with sub-nanometer precision by quantitatively evaluating the image signal and comparing the results with Monte Carlo simulations. The thickness determined by the dark-field transmission detector is compared to X-ray photoelectron spectroscopy and energy-filtered transmission electron microscopy measurements.

2.
Adv Mater ; 32(8): e1907850, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31945240

RESUMO

The collective "single-file" motion of water molecules through natural and artificial nanoconduits inspires the development of high-performance membranes for water separation. However, a material that contains a large number of pores combining rapid water flow with superior ion rejection is still highly desirable. Here, a 1.2 nm thick carbon nanomembrane (CNM) made from cross-linking of terphenylthiol (TPT) self-assembled monolayers is reported to possess these properties. Utilizing their extremely high pore density of 1 sub-nm channel nm-2 , TPT CNMs let water molecules rapidly pass, while the translocation of ions, including protons, is efficiently hindered. Their membrane resistance reaches ≈104 Ω cm2 in 1 m Cl- solutions, comparable to lipid bilayers of a cell membrane. Consequently, a single CNM channel yields an ≈108 higher resistance than pores in lipid membrane channels and carbon nanotubes. The ultrahigh ionic exclusion by CNMs is likely dominated by a steric hindrance mechanism, coupled with electrostatic repulsion and entrance effects. The operation of TPT CNM membrane composites in forward osmosis is also demonstrated. These observations highlight the potential of utilizing CNMs for water purification and opens up a simple avenue to creating 2D membranes through molecular self-assembly for highly selective and fast separations.

3.
Phys Chem Chem Phys ; 21(28): 15471-15477, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31257369

RESUMO

Mass transfer across porous materials with nanoscale thickness is of great interest in terms of both fundamentals of fluid dynamics and practical challenges of membrane separation. In particular, few-atom thick sieves are viewed as attractive candidates to achieve ultimate permeability without compromising membrane selectivity. In this work, we introduce a vacuum system for studying vapour and gas permeation in micrometre-sized samples of suspended nanometre-thick films. Steady-state permeation rates are measured with a mass-spectrometer directly connected to the downstream side of a membrane cell. A built-in nanoaperture is used as a reference to calibrate the detector in situ. A feed compartment is designed in a way that allows for preparing gaseous mixtures of variable composition, including vapours of volatile liquids. Room-temperature measurements with carbon nanomembranes confirm that this material is selective to water vapour and can efficiently separate it from mixtures with a variety of gases and organic compounds. We demonstrate that a high permeance for water is maintained regardless of the molar fraction and discuss its strong pressure dependence by invoking adsorption-related formalism.

4.
Phys Chem Chem Phys ; 21(5): 2351-2364, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30657503

RESUMO

Electron beam processing of surface-grown coordination polymers is a versatile approach to the fabrication of nanoscale surface structures. Depending on their molecular components, these materials can be converted into pure metallic particles or they can be activated to become a template for the spatially selective decomposition of suitable gaseous precursor molecules and subsequent autocatalytic growth of deposits. However, insight into the fundamental electron-induced chemistry for such processes has been scarce so far. Therefore, we investigated the electron-induced reactions of three self-assembled copper-containing materials, namely, copper(ii) oxalate, copper(ii) squarate, and copper(ii) 1,3,5-benzenetricarboxylate (HKUST-1) which were grown on the surface of self-assembled monolayers of mercaptoundecanoic acid in a layer-by-layer approach from copper(ii) acetate and various linker molecules. Changes incurred to these materials during electron irradiation were monitored by four complementary techniques. Reflection absorption infrared spectroscopy (RAIRS) and X-ray photoelectron spectroscopy (XPS) were used to identify the chemical species that are formed upon electron exposure. The temporal evolution of electron-stimulated desorption (ESD) of neutral volatile fragments was monitored to reveal the kinetics governing the decomposition of the different materials. Furthermore, the morphology was investigated by helium ion microscopy (HIM). A detailed analysis of the results for the different linker molecules provides new insights into the electron-induced chemistry of such surface-grown layers.

5.
Beilstein J Nanotechnol ; 9: 2968-2979, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30591845

RESUMO

Background: The application of superparamagnetic particles as biomolecular transporters in microfluidic systems for lab-on-a-chip applications crucially depends on the ability to control their motion. One approach for magnetic-particle motion control is the superposition of static magnetic stray field landscapes (MFLs) with dynamically varying external fields. These MFLs may emerge from magnetic domains engineered both in shape and in their local anisotropies. Motion control of smaller beads does necessarily need smaller magnetic patterns, i.e., MFLs varying on smaller lateral scales. The achievable size limit of engineered magnetic domains depends on the magnetic patterning method and on the magnetic anisotropies of the material system. Smallest patterns are expected to be in the range of the domain wall width of the particular material system. To explore these limits a patterning technology is needed with a spatial resolution significantly smaller than the domain wall width. Results: We demonstrate the application of a helium ion microscope with a beam diameter of 8 nm as a mask-less method for local domain patterning of magnetic thin-film systems. For a prototypical in-plane exchange-bias system the domain wall width has been investigated as a function of the angle between unidirectional anisotropy and domain wall. By shrinking the domain size of periodic domain stripes, we analyzed the influence of domain wall overlap on the domain stability. Finally, by changing the geometry of artificial two-dimensional domains, the influence of domain wall overlap and domain wall geometry on the ultimate domain size in the chosen system was analyzed. Conclusion: The application of a helium ion microscope for magnetic patterning has been shown. It allowed for exploring the fundamental limits of domain engineering in an in-plane exchange-bias thin film as a prototypical system. For two-dimensional domains the limit depends on the domain geometry. The relative orientation between domain wall and anisotropy axes is a crucial parameter and therefore influences the achievable minimum domain size dramatically.

6.
Sci Rep ; 8(1): 13781, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30213960

RESUMO

The use of smart colloidal microgels for advanced applications critically depends on their response kinetics. We use pressure jump small angle neutron scattering with supreme time resolution to study the rapid volume phase transition kinetics of such microgels. Utilizing the pressure induced microphase separation inside the microgels we were able to resolve their collapse and swelling kinetics. While the collapse occurs on a time scale of 10 ms, the particle swelling turned out to be much faster. Photon correlation spectroscopy and static small angle neutron scattering unambiguously show, that the much slower collapse can be associated with the complex particle architecture exhibiting a loosely-crosslinked outer region and a denser inner core region. These insights into the kinetics of stimuli-responsive materials are of high relevance for their applications as nano-actuators, sensors or drug carriers. Moreover, the used refined pressure jump small angle neutron scattering technique is of broad interest for soft matter studies.

7.
ACS Nano ; 12(5): 4695-4701, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29741359

RESUMO

The provision of clean water is a global challenge, and membrane filtration is a key technology to address it. Conventional filtration membranes are constrained by a trade-off between permeance and selectivity. Recently, some nanostructured membranes demonstrated the ability to overcome this limitation by utilizing well-defined carbon nanoconduits that allow a coordinated passage of water molecules. The fabrication of these materials is still very challenging, but their performance inspires research toward nanofabricated membranes. This study reports on molecularly thin membranes with sub-nanometer channels that combine high water selectivity with an exceptionally high permeance. Carbon nanomembranes (CNMs) of ∼1.2 nm thickness are fabricated from terphenylthiol (TPT) monolayers. Scanning probe microscopy and transport measurements reveal that TPT CNMs consist of a dense network of sub-nanometer channels that efficiently block the passage of most gases and liquids. However, water passes through with an extremely high permeance of ∼1.1 × 10-4 mol·m-2·s-1·Pa-1, as does helium, but with a ∼ 2500 times lower flux. Assuming all channels in a TPT CNM are active in mass transport, we find a single-channel permeation of ∼66 water molecules·s-1·Pa-1. This suggests that water molecules translocate fast and cooperatively through the sub-nanometer channels, similar to carbon nanotubes and membrane proteins (aquaporins). CNMs are thus scalable two-dimensional sieves that can be utilized toward energy-efficient water purification.

8.
Beilstein J Nanotechnol ; 8: 2562-2571, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259871

RESUMO

The determination of the negative ion yield of 2'-chloro-1,1'-biphenyl (2-Cl-BP), 2'-bromo-1,1'-biphenyl (2-Br-BP) and 2'-iodo-1,1'-biphenyl (2-I-BP) upon dissociative electron attachment (DEA) at an electron energy of 0 eV revealed cross section values that were more than ten times higher for iodide loss from 2-I-BP than for the other halogenides from the respective biphenyls (BPs). Comparison with dissociative ionization mass spectra shows that the ratio of the efficiency of electron impact ionization induced fragmentation of 2-I-BP, 2-Br-BP, and 2-Cl-BP amounts to approximately 1:0.7:0.6. Inspired by these results, self-assembled monolayers (SAMs) of the respective biphenyl-4-thiols, 2-Cl-BPT, 2-Br-BPT, 2-I-BPT as well as BPT, were grown on a Au(111) substrate and exposed to 50 eV electrons. The effect of electron irradiation was investigated by X-ray photoelectron spectroscopy (XPS), to determine whether the high relative DEA cross section for iodide loss from 2-I-BPT as compared to 2-Br-BP and 2-Cl-BP is reflected in the cross-linking efficiency of SAMs made from these materials. Such sensitization could reduce the electron dose needed for the cross-linking process and may thus lead to a significantly faster conversion of the respective SAMs into carbon nanomembranes (CNMs) without the need for an increased current density. XPS data support the notation that DEA sensitization may be used to achieve more efficient electron-induced cross-linking of SAMs, revealing more than ten times faster cross-linking of 2-I-BPT SAMs compared to those made from the other halogenated biphenyls or from native BPT at the same current density. Furthermore, the transfer of a freestanding membrane onto a TEM grid and the subsequent investigation by helium ion microscopy (HIM) verified the existence of a mechanically stable CNM created from 2-I-BPT after exposure to an electron dose as low as 1.8 mC/cm2. In contrast, SAMs made from BPT, 2-Cl-BPT and 2-Br-BPT did not form stable CNMs after a significantly higher electron dose of 9 mC/cm2.

9.
J Phys Condens Matter ; 29(12): 125801, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28106005

RESUMO

The magnetic modification of exchange bias materials by 'ion bombardment induced magnetic patterning' has been established more than a decade ago. To understand these experimental findings several theoretical models were introduced. Few investigations, however, did focus on magnetic property modifications caused by effects of ion bombardment in the ferromagnetic layer. In the present study, the structural changes occurring under ion bombardment were investigated by Monte-Carlo simulations and in experiments. A strong reduction of the saturation magnetization scaling linearly with increasing ion doses is observed and our findings suggest that it is correlated to the swelling of the layer material based on helium implantation and vacancy creation.

10.
Nanoscale ; 7(32): 13393-7, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26203897

RESUMO

van der Waals heterostructures meet other low-dimensional materials. Stacking of about 1 nm thick nanosheets with out-of-plane anchor groups functionalized with fullerenes integrates this zero-dimensional material into layered heterostructures with a well-defined chemical composition and without degrading the mechanical properties. The developed modular and highly applicable approach enables the incorporation of other low-dimensional materials, e.g. nanoparticles or nanotubes, into heterostructures significantly extending the possible building blocks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...