Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(11): 113502, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461505

RESUMO

During inertial confinement fusion experiments at the National Ignition Facility (NIF), a capsule filled with deuterium and tritium (DT) gas, surrounded by a DT ice layer and a high-density carbon ablator, is driven to the temperature and densities required to initiate fusion. In the indirect method, 2 MJ of NIF laser light heats the inside of a gold hohlraum to a radiation temperature of 300 eV; thermal x rays from the hohlraum interior couple to the capsule and create a central hotspot at tens of millions degrees Kelvin and a density of 100-200 g/cm3. During the laser interaction with the gold wall, m-band x rays are produced at ∼2.5 keV; these can penetrate into the capsule and preheat the ablator and DT fuel. Preheat can impact instability growth rates in the ablation front and at the fuel-ablator interface. Monitoring the hohlraum x-ray spectrum throughout the implosion is, therefore, critical; for this purpose, a Multilayer Mirror (MLM) with flat response in the 2-4 keV range has been installed in the NIF 37° Dante calorimeter. Precision engineering and x-ray calibration of components mean the channel will report 2-4 keV spectral power with an uncertainty of ±8.7%.

2.
Opt Express ; 22(21): 25853-65, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25401618

RESUMO

We present an experimental study and performance improvement of periodic and aperiodic Ni/SiC multilayer coatings. Periodic Ni/SiC multilayer mirrors have been coated and characterized by grazing incidence X-ray reflectometry at 8.048 keV (Cu Kα radiation) and by measurements at 3 keV and 5 keV on synchrotron radiation facilities. An interdiffusion effect is found between Ni and SiC layers. A two-material model, Ni(x)Si(y)/SiC, using a silicide instead of Ni, was used to fit the measurements. The addition of 0.6 nm W barrier layers at the interfaces allows a significant reduction of the interdiffusion between Ni and SiC. In order to obtain a specific reflectivity profile in the 2 - 8 keV energy range, we have designed and coated aperiodic multilayer mirrors by using Ni/SiC with and without W barrier layers. The experimental reflectivity profiles as a function of the photon energy were measured on a synchrotron radiation facility in both cases. Adding W barrier layers in Ni/SiC multilayers provides a better precision on the layer thicknesses and a very good agreement between the experimental data and the targeted spectral profile.


Assuntos
Compostos Inorgânicos de Carbono/química , Níquel/química , Fenômenos Ópticos , Compostos de Silício/química , Tungstênio/química , Modelos Teóricos , Raios X
3.
Rev Sci Instrum ; 85(1): 013503, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24517761

RESUMO

CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV < photon energy < 5 keV) use only a filter and a coaxial detector. A further improvement of DMX consists in flat-response X-ray channels for a precise absolute measurement of the photon flux in the photon energy range from 0.1 keV to 6 keV. Such channels are equipped with a filter, a Multilayer Mirror (MLM), and a coaxial detector. We present as an example the development of channel for the gold M emission lines in the photon energy range from 2 keV to 4 keV which has been successfully used on the OMEGA laser facility. The results of the radiant power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...