Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36497906

RESUMO

The climate change impacts of South Asia (SA) are inextricably linked with increased monsoon variability and a clearly deteriorating trend with more frequent deficit monsoons. One of the most climate-vulnerable nations in the eastern and central Indo-Gangetic Basin is Bangladesh. There have been numerous studies on the effects of climate change in Bangladesh; however, most of them tended to just look at a small fraction of the impact elements or were climatic projections without accounting for the effects on agriculture. Additionally, simulation studies using the CERES-Rice and CERES-Wheat models were conducted for rice and wheat to evaluate the effects of climate change on Bangladeshi agriculture. However, up to now, Bangladesh has not implemented farming system ideas by integrating cropping systems with other income-generating activities. This study was conducted as part of the Indo-Gangetic Basin (IGB) regional evaluations using the protocols and integrated assessment processes of the Agricultural Model Intercomparison and Improvement Project (AgMIP). It was also done to calibrate crop models (APSIM and DSSAT) using rice and wheat. To assist policymakers in creating national and regional plans for anticipated future agricultural systems, our work on the integrated evaluation of climate change impacts on agricultural systems produced realistic predictions. The outcome of this research prescribes a holistic assessment of climate change on future production systems by including all the relevant enterprises in the agriculture sector. The findings of the study suggested two major strategies to minimize the yield and increase the profitability in a rice-wheat cropping system. Using a short-term HYV (High Yielding Variety) of rice can shift the sowing time of wheat by 7 days in advance compared to the traditional sowing days of mid-November. In addition, increasing the irrigation amount by 50 mm for wheat showed a better yield by 1.5-32.2% in different scenarios. These climate change adaptation measures could increase the per capita income by as high as 3.6% on the farm level.


Assuntos
Mudança Climática , Oryza , Agricultura/métodos , Aclimatação , Triticum
2.
Agron Sustain Dev ; 42(4): 78, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35945988

RESUMO

Diversification of smallholder rice-based cropping systems has the potential to increase cropping system intensity and boost food security. However, impacts on resource use efficiencies (e.g., nutrients, energy, and labor) remain poorly understood, highlighting the need to quantify synergies and trade-offs among different sustainability indicators under on-farm conditions. In southern coastal Bangladesh, aman season rice is characterized by low inputs and low productivity. We evaluated the farm-level impacts of cropping system intensification (adding irrigated boro season rice) and diversification (adding chili, groundnut, mungbean, or lathyrus) on seven performance indicators (rice equivalent yield, energy efficiency, partial nitrogen productivity, partial potassium productivity, partial greenhouse gas footprint, benefit-cost ratio, and hired labor energy productivity) based on a comprehensive survey of 501 households. Indicators were combined into a multi-criteria performance index, and their scope for improvement was calculated by comparing an individual farmer's performance to top-performing farmers (highest 20%). Results indicate that the baseline system (single-crop aman season rice) was the least productive, while double cropped systems increased rice equivalent yield 72-217%. Despite gains in productivity, higher cropping intensity reduced resource use efficiencies due to higher inputs of fertilizer and energy, which also increased production costs, particularly for boro season rice. However, trade-offs were smaller for diversified systems including legumes, largely owing to lower N fertilizer inputs. Aman season rice had the highest multi-criteria performance index, followed by systems with mungbean and lathyrus, indicating the latter are promising options to boost food production and profitability without compromising sustainability. Large gaps between individual and top-performing farmers existed for each indicator, suggesting significant scope for improvement. By targeting indicators contributing most to the multi-criteria performance index (partial nitrogen productivity, energy efficiency, hired labor energy productivity), results suggest further sustainability gains can be achieved through future field research studies focused on optimizing management within diversified systems. Supplementary Information: The online version contains supplementary material available at 10.1007/s13593-022-00795-3.

3.
PLoS One ; 16(9): e0256694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34506515

RESUMO

Large changes have taken place in smallholder farming systems in South Asia's coastal areas in recent decades, particularly related to cropping intensity, input availability, climate risks, and off-farm activities. However, few studies have investigated the extent to which these changes have impacted farm-level crop productivity, which is a key driver of food security and poverty in rainfed, low-input, rice-based systems. The objective of this study was to conduct an integrated assessment of variables related to socioeconomic status, farm characteristics, and crop management practices to understand the major factors influencing crop productivity and identify promising leverage points for sustainable development in coastal Bangladesh. Using a panel survey dataset of 32 variables from 502 farm households located within polder (coastal embankment) and outside polder systems during 2005-2015, we employed statistical factor analysis to characterize five independent latent factors named here as Farming Challenges, Economic Status, Crop Management Practices, Asset Endowment, and Farm Characteristics. The factor Farming Challenges explained the most variation among households (31%), with decreases observed over time, specifically households located outside polders. Individual variables contributing to this factor included perceived cyclone severity, household distance to main roads and input-output markets, cropping intensity, and access to extension services. The most important factors for increasing crop productivity on a household and per unit area basis were Asset Endowment and Crop Management Practices, respectively. The former highlights the need for increasing gross cropped area, which can be achieved through greater cropping intensity, while the latter was associated with increased fertilizer, labor, and pesticide input use. Despite the importance of these factors, household poverty trajectory maps showed that changes in off-farm income had played the strongest role in improving livelihoods in this coastal area. This study can help inform development efforts and policies for boosting farm-level crop productivity, specifically through agricultural intensification (higher cropping intensity combined with appropriate and efficient use of inputs) and expanding opportunities for off-farm income as key pathways to bring smallholder households out of poverty.


Assuntos
Agricultura/economia , Fazendas/economia , Renda/estatística & dados numéricos , Pobreza/economia , Bangladesh , Fazendeiros , Humanos , Oryza/crescimento & desenvolvimento , Desenvolvimento Sustentável
4.
Field Crops Res ; 241: 107567, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31534298

RESUMO

Farmers in low-elevation coastal zones in South Asia face numerous food security and environmental sustainability challenges. This study evaluated the effects of nitrogen (N) rate and source on the agronomic, economic, and environmental performance of transplanted and rainfed 'aman' (monsoon-season) rice in Bangladesh's non-saline coastal areas. Fifty-one farmers participated in trials distributed across two landscape positions described as 'highlands' (on which field water inundation depth typically remains <30 cm) and 'medium-highlands' (inundation depths 30-90 cm) planted singly with varieties appropriate to each position (BRRI dhan 39 for highlands and the traditional variety Bhushiara for medium-highlands). Researcher designed but farmer-managed dispersed plots were located across three district sub-units (Barisal Sadar, Hizla, Mehendigonj) and compared N source (broadcast prilled urea or deep-placed urea super granules (USG)) at four N rates. Rice grown on medium-highlands did not respond to increasing N rates beyond 28 kg N ha-1, indicating that little fertilization is required to maintain yields and profitability while limiting environmental externalities. In highland locations, clear trade-offs between agronomic and environmental goals were observed. To increase yields and profits for BRRI dhan 39, 50 or 75 kg N ha-1 was often needed, although these rates were associated with declining energy and increasing greenhouse gas (GHG) efficiencies. Compared to prilled urea, USG had no impact on yield, economic, energy and GHG efficiencies in medium-highland locations. USG conversely led to 4.2-5.8% yield improvements at higher N rates on highlands, while also increasing energy efficiency. Given the observed yield, agronomic and economic benefit of USG, our preliminary results that farmers can consider use of USG at 50 kg N ha-1 to produce yields equivalent to 75 kg N ha-1 of prilled urea in highland landscapes, while also reducing environmental externalities. These results suggest that when assessing sustainable intensification (SI) strategies for rice in South Asia's coastal zones, N requirements should be evaluated within specific production contexts (e.g. cultivar type within landscape position) to identify options for increasing yields without negatively influencing environmental and economic indicators. Similar studies in other parts of coastal South Asia could help policy-makers prioritize investments in agriculture with the aim of improving rice productivity while also considering income generation and environmental outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...