Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(19): 13000-13009, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710503

RESUMO

Amphiphilic bottlebrush block copolymers (BBCPs), having a hydrophilic bottlebrush polymer (BP) linked covalently to a hydrophobic BP, were found to segregate to liquid-liquid interfaces to minimize the free energy of the system. The key parameter influencing the outcome of the experiments is the ratio between the degree of polymerization of the backbone (NBB) and that of the side-chain brushes (NSC). Specifically, a spherical, star-like configuration results when NBB < NSC, while a cylindrical, bottlebrush-like shape is preferred when NBB > NSC. Dynamic interfacial tension (γ) and fluorescence recovery after photobleaching (FRAP) measurements show that the BBCP configuration influences the areal density and in-plane diffusion at the fluid interface. The characteristic relaxation times associated with BBCP adsorption (τA) and reorganization (τR) were determined by fitting time-dependent interfacial tension measurements to a sum of two exponential relaxation functions. Both τA and τR initially increased with NBB up to 92 repeat units, due to the larger hydrodynamic radius in solution and slower in-plane diffusivity, attributed to a shorter cross-sectional diameter of the side-chains near the block junction. This trend reversed at NBB = 190, with shorter τA and τR attributed to increased segregation strength and exposure of the bare water/toluene interface due to tilting and/or wiggling of the backbone chains, respectively. The adsorption energy barrier decreased with higher NBB, due to a reduced BBCP packing density at the fluid interface. This study provides fundamental insights into macromolecular assembly at fluid interfaces, as it pertains to unique bottlebrush block architectures.

2.
Angew Chem Int Ed Engl ; : e202404382, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616164

RESUMO

We formed core-shell-like polyelectrolyte complexes (PECs) from an anionic bottlebrush polymer with poly (acrylic acid) side chains with a cationic linear poly (allylamine hydrochloride). By varying the pH, the number of side chains of the polyanionic BB polymers (Nbb), the charge density of the polyelectrolytes, and the salt concentration, the phase separation behavior and salt resistance of the complexes could be tuned by the conformation of the BBs. By combining the linear/bottlebrush polyelectrolyte complexation with all-liquid 3D printing, flow-through tubular constructs were produced that showed selective transport across the PEC membrane comprising the walls of the tubules. These tubular constructs afford a new platform for flow-through delivery systems.

3.
J Am Chem Soc ; 146(12): 8189-8197, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38471087

RESUMO

Conventional ligands for CsPbBr3 perovskite nanocrystals (NCs), composed of polar, coordinating head groups (e.g., ammonium or zwitterionic) and aliphatic tails, are instrumental in stabilizing the NCs against sintering and aggregation. Nonetheless, the aliphatic (insulating) nature of these ligands represents drawbacks with respect to objectives in optoelectronics, and yet removing these ligands typically leads to a loss of colloidal stability. In this paper, we describe the preparation of CsPbBr3 NCs in the presence of discrete conjugated oligomers that were prepared by an iterative synthetic approach and capped at their chain ends with sulfobetaine zwitterions for perovskite coordination. Notably, these zwitterionic oligofluorenes are compatible with the hot injection and ligand exchange conditions used to prepare CsPbBr3 NCs, yielding stable NC dispersions with high photoluminescence quantum yields (PLQY, >90%) and spectral features representative of both the perovskite core and conjugated ligand shell. Controlling the chain length of these capping ligands effectively regulated inter-NC spacing and packing geometry when cast into solid films, with evidence derived from both transmission electron microscopy (TEM) and grazing incidence X-ray scattering measurements.

4.
Macromol Rapid Commun ; 45(8): e2300690, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38207336

RESUMO

The compositional scope of polymer zwitterions has grown significantly in recent years and now offers designer synthetic materials that are broadly applicable across numerous areas, including supracolloidal structures, electronic materials interfaces, and macromolecular therapeutics. Among recent developments in polymer zwitterion syntheses are those that allow insertion of reactive functionality directly into the zwitterionic moiety, yielding new monomer and polymer structures that hold potential for maximizing the impact of zwitterions on the macromolecular materials chemistry field. This manuscript describes the preparation of zwitterionic choline phosphate (CP) methacrylates containing either aromatic or aliphatic thiols embedded directly into the zwitterionic moiety. The polymerization of these functional CP methacrylates by reversible addition-fragmentation chain-transfer methodology yields polymeric zwitterionic thiols containing protected thiol functionality in the zwitterionic units. After polymerization, the protected thiols are liberated to yield thiol-rich polymer zwitterions which serve as precursors to subsequent reactions that produce polymer networks as well as polymer-protein bioconjugates.


Assuntos
Polimerização , Polímeros , Compostos de Sulfidrila , Compostos de Sulfidrila/química , Polímeros/química , Polímeros/síntese química , Fosforilcolina/química , Fosforilcolina/análogos & derivados , Estrutura Molecular , Metacrilatos/química
5.
Soft Matter ; 20(7): 1554-1564, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38270211

RESUMO

Bottlebrush random copolymers (BRCPs), consisting of a random distribution of two homopolymer chains along a backbone, can segregate to the interface between two immiscible homopolymers. BRCPs undergo a reconfiguration, where each block segregates to one of the homopolymer phases, adopting a Janus-type structure, reducing the interfacial tension and promoting adhesion between the two homopolymers, thereby serving as a Janus bottlebrush copolymer (JBCP) compatibilizer. We synthesized a series of JBCPs by copolymerizing deuterated or hydrogenated polystyrene (DPS/PS) and poly(tert-butyl acrylate) (PtBA) macromonomers using ruthenium benzylidene-initiated ring-opening metathesis polymerization (ROMP). Subsequent acid-catalyzed hydrolysis converted the PtBA brushes to poly(acrylic acid) (PAA). The JBCPs were then placed at the interface between DPS/PS homopolymers and poly(2-vinyl pyridine) (P2VP) homopolymers, where the degree of polymerization of the backbone (NBB) and the grafting density (GD) of the JBCPs were varied. Neutron reflectivity (NR) was used to determine the interfacial width and segmental density distributions (including PS homopolymer, PS block, PAA block and P2VP homopolymer) across the polymer-polymer interface. Our findings indicate that the star-like JBCP with NBB = 6 produces the largest interfacial broadening. Increasing NBB to 100 (rod-like shape) and 250 (worm-like shape) reduced the interfacial broadening due to a decrease in the interactions between blocks and homopolymers by stretching of blocks. Decreasing the GD from 100% to 80% at NBB = 100 caused an increase the interfacial width, yet further decreasing the GD to 50% and 20% reduced the interfacial width, as 80% of GD may efficiently increase the flexibility of blocks and promote interactions between homopolymers, while maintaining relatively high number of blocks attached to one molecule. The interfacial conformation of JBCPs was further translated into compatibilization efficiency. Thin film morphology studies showed that only the lower NBB values (NBB = 6 and NBB = 24) and the 80% GD of NBB = 100 had bicontinuous morphologies, due to a sufficient binding energy that arrested phase separation, supported by mechanical testing using asymmetric double cantilever beam (ADCB) tests. These provide fundamental insights into the assembly behavior of JBCPs compatibilizers at homopolymer interfaces, opening strategies for the design of new BCP compatibilizers.

6.
Small ; 20(15): e2308560, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37994305

RESUMO

The in-plane packing of gold (Au), polystyrene (PS), and silica (SiO2) spherical nanoparticle (NP) mixtures at a water-oil interface is investigated in situ by UV-vis reflection spectroscopy. All NPs are functionalized with carboxylic acid such that they strongly interact with amine-functionalized ligands dissolved in an immiscible oil phase at the fluid interface. This interaction markedly increases the binding energy of these nanoparticle surfactants (NPSs). The separation distance between the Au NPSs and Au surface coverage are measured by the maximum plasmonic wavelength (λmax) and integrated intensities as the assemblies saturate for different concentrations of non-plasmonic (PS/SiO2) NPs. As the PS/SiO2 content increases, the time to reach intimate Au NP contact also increases, resulting from their hindered mobility. λmax changes within the first few minutes of adsorption due to weak attractive inter-NP forces. Additionally, a sharper peak in the reflection spectrum at NP saturation reveals tighter Au NP packing for assemblies with intermediate non-plasmonic NP content. Grazing incidence small angle X-ray scattering (GISAXS) and scanning electron microscopy (SEM) measurements confirm a decrease in Au NP domain size for mixtures with larger non-plasmonic NP content. The results demonstrate a simple means to probe interfacial phase separation behavior using in situ spectroscopy as interfacial structures densify into jammed, phase-separated NP films.

7.
ACS Nano ; 17(15): 14731-14741, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490585

RESUMO

Bottlebrush polymer surfactants (BPSs), formed by the interfacial interactions between bottlebrush polymers (BPs) with poly(acrylic acid) side chains dissolved in an aqueous phase and amine-functionalized ligands dissolved in the oil phase, assemble and bind strongly to the fluid-fluid interface. The ratio between NBB (backbone degree of polymerization) and NSC (side chain degree of polymerization) defines the initial assembly kinetics, interface packing efficiency, and stress relaxation. The equilibrium interfacial tension (γ) increases when NBB < NSC, but decreases when NBB ≫ NSC, correlating to a pronounced change in the effective shape of the BPs from being spherical to worm-like structures. The apparent surface coverage (ASC), i.e., the interfacial packing efficiency, decreases as NBB increases. The dripping-to-jetting transition of an injected polymer solution, as well as fluorescence recovery after photobleaching experiments, revealed faster initial assembly kinetics for BPs with higher NBB. Euler buckling of BPS assemblies with different NBB values was used to characterize the stress relaxation behavior and bending modulus. The stress relaxation behavior was directly related to the ASC, reflecting the strong influence of macromolecular shape on packing efficiency. The bending modulus of BPSs decreases for NBB < NSC, but increased when NBB ≫ NSC, showing the effect of molecular architecture and multisite anchoring. All-liquid printed constructs with lower NBB BPs yielded more stable structured liquids, underscoring the importance of macromolecular packing efficiency at fluid interfaces. Overall, this work elucidates fundamental relationships between nanoscopic structures and macroscopic properties associated with various bottlebrush polymer architectures, which translate to the stabilization of all-fluidic printed constructs.

8.
ACS Appl Bio Mater ; 6(7): 2905-2915, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37384901

RESUMO

In this manuscript, we report the synthesis of zwitterionic copolymers and their ability to form antifouling coatings on porous hydroxyapatite as a mimic of dental coatings. Specifically, we systematically investigated how altering the composition of copolymers of catechol methacrylate (Cat-MA or 2) and methacryloyloxyethyl phosphorylcholine (2-MPC) with varying catechol-to-zwitterion ratios impacted their adhesive and antifouling properties, allowing for the rational design of functional coatings. Characterization by ellipsometry, contact angle goniometry, and X-ray photoelectron spectroscopy revealed the presence of hydrophilic copolymer coatings of ∼10 nm thickness. Notably, these copolymers adhered to hydroxyapatite and reduced the level of attachment of both Gram-negative Escherichia coli and Gram-positive Streptococcus oralis. Additionally, in vitro experiments that mimicked the complex mouth environment (i.e., swallowing and using mouthwash) were employed to evaluate S. oralis adhesion, finding that the copolymer coatings reduced the quantity of adhered bacteria. We suggest that these copolymers provide insights into the design of antifouling coatings that are appropriate for use in oral care.


Assuntos
Aderência Bacteriana , Polímeros , Polímeros/farmacologia , Polímeros/química , Metacrilatos/farmacologia , Metacrilatos/química , Durapatita , Catecóis/farmacologia
9.
Langmuir ; 39(7): 2659-2666, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36752594

RESUMO

Hydrogels are water-swollen, typically soft networks useful as biomaterials and in other fields of biotechnology. Hydrogel networks capable of sensing and responding to external perturbations, such as light, temperature, pH, or force, are useful across a wide range of applications requiring on-demand cross-linking or dynamic changes. Thus far, although mechanophores have been described as strain-sensitive reactive groups, embedding this type of force-responsiveness into hydrogels is unproven. Here, we synthesized multifunctional polymers that combine a hydrophilic zwitterion with permanently cross-linking alkenes, and dynamically cross-linking disulfides. From these polymers, we created hydrogels that contain irreversible and strong thiol-ene cross-links and reversible disulfide cross-links, and they stiffened in response to strain, increasing hundreds of kPa in modulus under compression. We examined variations in polymer composition and used a constitutive model to determine how to balance the number of thiol-ene vs disulfide cross-links to create maximally force-responsive networks. These strain-stiffening hydrogels represent potential biomaterials that benefit from the mechanoresponsive behavior needed for emerging applications in areas such as tissue engineering.


Assuntos
Hidrogéis , Polímeros , Hidrogéis/química , Polímeros/química , Materiais Biocompatíveis/química , Compostos de Sulfidrila/química , Dissulfetos/química
10.
Nat Commun ; 14(1): 625, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739283

RESUMO

Filamentous bundles are ubiquitous in Nature, achieving highly adaptive functions and structural integrity from assembly of diverse mesoscale supramolecular elements. Engineering routes to synthetic, topologically integrated analogs demands precisely coordinated control of multiple filaments' shapes and positions, a major challenge when performed without complex machinery or labor-intensive processing. Here, we demonstrate a photocreasing design that encodes local curvature and twist into mesoscale polymer filaments, enabling their programmed transformation into target 3-dimensional geometries. Importantly, patterned photocreasing of filament arrays drives autonomous spinning to form linked filament bundles that are highly entangled and structurally robust. In individual filaments, photocreases unlock paths to arbitrary, 3-dimensional curves in space. Collectively, photocrease-mediated bundling establishes a transformative paradigm enabling smart, self-assembled mesostructures that mimic performance-differentiating structures in Nature (e.g., tendon and muscle fiber) and the macro-engineered world (e.g., rope).

11.
Macromol Rapid Commun ; 44(7): e2200873, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36698325

RESUMO

A one-step dispersion copolymerization technique is demonstrated to fabricate biphasic particles as an approach to streamline the production of particles with complex morphology. The model system studies a monomer feed of hydrophobic styrene and hydrophilic, zwitterionic sulfobetaine methacrylate (SBMA) in a water/isopropanol cosolvent mixture. The resulting particles have a core-shell morphology that can be transformed, simply by washing the particles with water, into particles with a single surface opening connected to an interior cavity. Results indicate that particle morphology is dependent on the presence of nanoscopic SBMA-rich aggregates in the initial reaction mixture to act as nucleation sites, forming an SBMA-rich core encased in a styrene-rich shell. Systematic study of the morphology evolution reveals that the difference in monomer solubility profile can be exploited to control compositional drift of the particle composition during copolymerization yielding copolymer with sufficiently different composition to form phase-separated particle morphology. When SBMA is replaced with various ionic comonomers, the cavity-forming morphology is observed when reaction conditions result in low solubility of the comonomer in the cosolvent mixture. Based on these results, design guidelines are developed that may be applied to a variety of systems requiring complex and responsive particles made from chemically distinct comonomer pairings.


Assuntos
Polímeros , Estireno , Polímeros/química , Metacrilatos/química , Polimerização
12.
J Am Chem Soc ; 144(48): 22059-22066, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36442142

RESUMO

Stabilization of fluid droplets, classically as oil-in-water or water-in-oil emulsions, is typically conducted using molecular surfactants or small particulates that localize at oil-water interfaces. In this paper, we describe a method whereby thin polymer films are converted photolithographically to ribbon-like mesoscale objects, which, in turn, adsorb to fluid interfaces where they extend as appendages, or arms, from the droplet surface. These "mesoscale polymer surfactants", or MPSs, were prepared from thin polymer films containing reactive functional moieties, including coumarin for photo-cross-linking, triphenylsulfonium for photoacid generation, and tert-butyl ester for solubility switching. The resultant MPSs, prepared initially on Si substrates, were released into water to reveal an exquisite shape sensitivity (forming straight, bent, or helical structures) and affinity for droplet interfaces based on their preparation conditions and the properties of the surrounding liquid. Notably, the lithographic techniques employed were amenable to differentiating the wettability of MPS segments, affording access to diblock-like MPSs which adhered to dispersed droplets via their hydrophobic segments, allowing their hydrophilic segments to extend into the continuous phase.

13.
ACS Appl Mater Interfaces ; 14(46): 52390-52401, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36346915

RESUMO

Membrane fouling remains a key challenge for membrane separations. Hydrophilic membrane surface modification can mitigate irreversible foulant deposition, thereby improving fouling resistance. We report new hydrophilic membrane coatings based on 1,4-benzoquinone and various commercially available polyetheramines. These coatings, prepared from 1,4-benzoquinone and Jeffamine EDR 148, poly(benzoquinone-Jeffamine EDR 148) (p(BQ-EDR 148)), were used to modify polysulfone (PS) ultrafiltration membranes. In fouling experiments using an oil/water emulsion, membranes exhibited comparable fouling resistance to that of polydopamine (pDA)-modified membranes. Based on contact angle measurements, p(BQ-EDR 148) and pDA-modified membranes have similar levels of hydrophilicity, and both exhibited higher threshold flux values than those of their unmodified analogues. Based on their similar threshold flux values, p(BQ-EDR 148)-modified (76 LMH) and pDA-modified membranes (74 LMH) should have similar fouling resistance. Moreover, the mean pore size of p(BQ-EDR 148)-modified membranes can be tuned, while keeping the pure water permeance constant, by changing the deposition time and molar ratio of benzoquinone to EDR 148 in the modification solution.

14.
Biomacromolecules ; 23(10): 4029-4040, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36125365

RESUMO

Gene delivery as a therapeutic tool continues to advance toward impacting human health, with several gene therapy products receiving FDA approval over the past 5 years. Despite this important progress, the safety and efficacy of gene therapy methodology requires further improvement to ensure that nucleic acid therapeutics reach the desired targets while minimizing adverse effects. Synthetic polymers offer several enticing features as nucleic acid delivery vectors due to their versatile functionalities and architectures and the ability of synthetic chemists to rapidly build large libraries of polymeric candidates equipped for DNA/RNA complexation and transport. Current synthetic designs are pursuing challenging objectives that seek to improve transfection efficiency and, at the same time, mitigate cytotoxicity. This Perspective will describe recent work in polymer-based gene complexation and delivery vectors in which cationic polyelectrolytes are modified synthetically by introduction of additional components─including hydrophobic, hydrophilic, and fluorinated units─as well as embedding of degradable linkages within the macromolecular structure. As will be seen, recent advances employing these emerging design strategies are promising with respect to their excellent biocompatibility and transfection capability, suggesting continued promise of synthetic polymer gene delivery vectors going forward.


Assuntos
Ácidos Nucleicos , DNA/química , Técnicas de Transferência de Genes , Humanos , Polímeros/química , RNA , Transfecção
15.
Angew Chem Int Ed Engl ; 61(37): e202207126, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35925675

RESUMO

Post-synthesis anion exchange of all-inorganic cesium lead halide perovskite nanocrystals (CsPbX3 NCs, where X=Cl, Br, and/or I) provides a rapid and simple means of tuning their band gap and photoluminescence emission wavelengths. Here we report color-shifting of CsPbX3 nanocrystals induced by a macromolecular source of halide ions, specifically using polystyrene with ammonium halides as pendent groups. This strategy for introducing new halides to the perovskite nanocrystals gave access to perovskite-polymer hybrid materials as solutions, thin films, or free-flowing powders. Spectroscopic measurements of the halide-exchanged nanocrystal products revealed high photoluminescence quantum yields across the visible spectrum, with exchange kinetics that were tunable based on the solution environment, suggesting an aggregation-inhibited exchange process that affords access to multi-colored solutions and films.

16.
ACS Nano ; 16(7): 10581-10588, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35793417

RESUMO

We report fabrication of highly flexible micron-sized helices from nanometer-thick ribbons. Building upon the helical coiling of such ultrathin ribbons mediated by surface tension, we demonstrate that the enhanced creep properties of highly confined materials can be leveraged to shape helices into the desired geometry with full control of the final shape. The helical radius, total length, and pitch angle are all freely and independently tunable within a wide range: radius within ∼1-100 µm, length within ∼100-3000 µm, and pitch angle within ∼0-70°. This fabrication method is validated for three different materials: poly(methyl methacrylate), poly(dimethylaminoethyl methacrylate), and transition metal chalcogenide quantum dots, each corresponding to a different solid-phase structure: respectively a polymer glass, a cross-linked hydrogel, and a nanoparticle array. This demonstrates excellent versatility with respect to material selection, enabling further control of the helix mechanical properties.

17.
ACS Appl Mater Interfaces ; 14(26): 29896-29904, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35758244

RESUMO

Organic solar cells (OSCs) and perovskite solar cells (PVSCs) are promising candidates for next-generation thin film photovoltaic technologies. The integration of OSCs with PVSCs in tandem devices is now attracting significant attention due to their similar fabrication procedures and the potential to afford a higher device performance. Here, a thickness-insensitive and solvent-resistant interconnecting layer is developed to efficiently connect perovskite and organic subcells with low contact resistance. The resultant perovskite-organic tandem devices maintain high efficiencies over a wide thickness range of the interconnecting layer, from ∼20 nm to ∼50 nm, providing an easily fabricated, solvent-resistant platform to integrate perovskite and organic active layers with low-temperature solution processing techniques. The tandem devices containing an ultrathin PVSC and a typical non-fullerene OSC give a maximum efficiency of 19.2%, which is much higher than those of the single-junction devices. Moreover, highly reproducible 1 cm2 perovskite-organic tandem devices are achieved using the thickness-insensitive and solvent-resistant interconnecting layer, and an efficiency of 17.8% is realized. These 1 cm2 tandem solar cells are used successfully in solar-to-hydrogen systems to afford a solar-to-fuel conversion efficiency of 11.2%. Overall, these advances represent significant progress in the design of ultrathin and facile solution processed perovskite-organic tandem solar cells.

18.
Bioengineering (Basel) ; 9(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35735491

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease which is characterized primarily by synovial hyperplasia and accumulation of several types of immune infiltrates that promote progressive destruction of the articular structure. Glucocorticoids are often prescribed to treat RA because of their strong anti-inflammatory and immunosuppressive effects. However, their application must be limited to the short-term due to a risk of adverse events. In the present study, we examined the potential combination of low-dose prednisone with gene delivery of an agent of promising and complementary effectiveness in RA, interleukin (IL)-27. IL-27 has been shown to have anti-inflammatory potential, while also acting as an effective bone-normalization agent in prior reports. The present report examined a version of IL-27 targeted at the C-terminus with a short 'peptide L' (pepL, LSLITRL) that binds the interleukin 6 receptor α (IL-6Rα) upregulated during inflammation. By focusing on this targeted form, IL-27pepL or 27pL, we examined whether the anti-inflammatory potential of prednisone (at a relatively low dose and short duration) could be further enhanced in the presence of 27pL as a therapy adjuvant. Our results indicate that 27pL represents a novel tool for use as an adjuvant with current therapeutics, such as prednisone, against inflammatory conditions.

19.
J Phys Chem Lett ; 13(21): 4794-4799, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35613709

RESUMO

While extrinsic factors, such as substrates and chemical doping, are known to strongly influence visible photoemission from monolayer MoS2, key fundamental knowledge for p-type polymeric dopants is lacking. We investigated perturbations to the electronic environment of 2D MoS2 using fluorinated polymer coatings and specifically studied stabilization of three-particle states by monitoring changes in intensities and emission maxima of three-particle and two-particle emissions. We calculated changes in carrier density and trion binding energy, the latter having an additional contribution from MoS2 polarization by the polymer. Polarization is further suggested by Kelvin probe force microscopy (KPFM) measurements of large Fermi level shifts. Changes similar in magnitude, but opposite in sign, were observed in 2D MoS2 coated with an analogous nonfluorinated polymer. These findings highlight the important interplay between electron exchange and electrostatic interactions at the interface between polymers and transition metal dichalcogenides (TMDCs), which govern fundamental electronic properties relevant to next-generation devices.

20.
Chemistry ; 28(30): e202200409, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35373422

RESUMO

Traditional hot injection methods for the preparation of cesium lead halide perovskite nanocrystals (CsPbX3 PNCs, where X=Cl, Br, or I) rely on small molecule surfactants to produce PNCs with cube, plate, or rod-like morphologies. Here, we describe a new method whereby zwitterionic block copolymers are employed as macromolecular ligands in PNC synthesis, affording PNCs with excellent colloidal stability, high photoluminescence quantum yield, and in some cases distinctly non-cubic shapes. The block copolymers used in this study - composed of a poly(n-butyl methacrylate) hydrophobic block and zwitterionic methacrylate hydrophilic blocks - dissolve in useful solvents for PNC growth despite containing large mole percentages of zwitterionic groups. PNCs prepared with block copolymer ligands were found to disperse and retain their fluorescence in a range of polar organic solvents and were amenable to direct integration into optically transparent nanocomposite thin films with high PNC content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...