Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Astron ; 8(4): 463-471, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659612

RESUMO

The radius valley (or gap) in the observed distribution of exoplanet radii, which separates smaller super-Earths from larger sub-Neptunes, is a key feature that theoretical models must explain. Conventionally, it is interpreted as the result of the loss of primordial hydrogen and helium (H/He) envelopes atop rocky cores. However, planet formation models predict that water-rich planets migrate from cold regions outside the snowline towards the star. Assuming water to be in the form of solid ice in their interior, many of these planets would be located in the radius gap contradicting observations. Here we use an advanced coupled formation and evolution model that describes the planets' growth and evolution starting from solid, moon-sized bodies in the protoplanetary disk to mature Gyr-old planetary systems. Employing new equations of state and interior structure models to treat water as vapour mixed with H/He, we naturally reproduce the valley at the observed location. The model results demonstrate that the observed radius valley can be interpreted as the separation of less massive, rocky super-Earths formed in situ from more massive, ex situ, water-rich sub-Neptunes. Furthermore, the occurrence drop at larger radii, the so-called radius cliff, is matched by planets with water-dominated envelopes. Our statistical approach shows that the synthetic distribution of radii quantitatively agrees with observations for close-in planets, but only if low-mass planets initially containing H/He lose their atmosphere due to photoevaporation, which populates the super-Earth peak with evaporated rocky cores. Therefore, we provide a hybrid theoretical explanation of the radius gap and cliff caused by both planet formation (orbital migration) as well as evolution (atmospheric escape).

2.
Eur Phys J Plus ; 138(2): 181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874528

RESUMO

Planetary population synthesis is a helpful tool to understand the physics of planetary system formation. It builds on a global model, meaning that the model has to include a multitude of physical processes. The outcome can be statistically compared with exoplanet observations. Here, we review the population synthesis method and then use one population computed using the Generation III Bern model to explore how different planetary system architectures emerge and which conditions lead to their formation. The emerging systems can be classified into four main architectures: Class I of near in situ compositionally ordered terrestrial and ice planets, Class II of migrated sub-Neptunes, Class III of mixed low-mass and giant planets, broadly similar to the Solar System, and Class IV of dynamically active giants without inner low-mass planets. These four classes exhibit distinct typical formation pathways and are characterised by certain mass scales. We find that Class I forms from the local accretion of planetesimals followed by a giant impact phase, and the final planet masses correspond to what is expected from such a scenario, the 'Goldreich mass'. Class II, the migrated sub-Neptune systems form when planets reach the 'equality mass' where accretion and migration timescales are comparable before the dispersal of the gas disc, but not large enough to allow for rapid gas accretion. Giant planets form when the 'equality mass' allows for gas accretion to proceed while the planet is migrating, i.e. when the critical core mass is reached. The main discriminant of the four classes is the initial mass of solids in the disc, with contributions from the lifetime and mass of the gas disc. The distinction between mixed Class III systems and Class IV dynamically active giants is in part due to the stochastic nature of dynamical interactions, such as scatterings between giant planets, rather than the initial conditions only. The breakdown of system into classes allows to better interpret the outcome of a complex model and understand which physical processes are dominant. Comparison with observations reveals differences to the actual population, pointing at limitation of theoretical understanding. For example, the overrepresentation of synthetic super-Earths and sub-Neptunes in Class I systems causes these planets to be found at lower metallicities than in observations.

3.
Nature ; 583(7814): 39-42, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32612222

RESUMO

The interiors of giant planets remain poorly understood. Even for the planets in the Solar System, difficulties in observation lead to large uncertainties in the properties of planetary cores. Exoplanets that have undergone rare evolutionary processes provide a route to understanding planetary interiors. Planets found in and near the typically barren hot-Neptune 'desert'1,2 (a region in mass-radius space that contains few planets) have proved to be particularly valuable in this regard. These planets include HD149026b3, which is thought to have an unusually massive core, and recent discoveries such as LTT9779b4 and NGTS-4b5, on which photoevaporation has removed a substantial part of their outer atmospheres. Here we report observations of the planet TOI-849b, which has a radius smaller than Neptune's but an anomalously large mass of [Formula: see text] Earth masses and a density of [Formula: see text] grams per cubic centimetre, similar to Earth's. Interior-structure models suggest that any gaseous envelope of pure hydrogen and helium consists of no more than [Formula: see text] per cent of the total planetary mass. The planet could have been a gas giant before undergoing extreme mass loss via thermal self-disruption or giant planet collisions, or it could have avoided substantial gas accretion, perhaps through gap opening or late formation6. Although photoevaporation rates cannot account for the mass loss required to reduce a Jupiter-like gas giant, they can remove a small (a few Earth masses) hydrogen and helium envelope on timescales of several billion years, implying that any remaining atmosphere on TOI-849b is likely to be enriched by water or other volatiles from the planetary interior. We conclude that TOI-849b is the remnant core of a giant planet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...