Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
1.
J Phys Chem Lett ; 15(20): 5488-5494, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38748557

RESUMO

Solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) is a nuclear magnetic resonance spectroscopy technique in which nuclear spin hyperpolarization is generated upon optical irradiation of an appropriate donor-acceptor system. Until now, solid-state photo-CIDNP at high magnetic fields has been observed only in photosynthetic reaction centers and flavoproteins. In the present work, we show that the effect is not limited to such biomolecular samples, and solid-state 13C photo-CIDNP can be observed at 9.4 T under magic angle spinning using a frozen solution of a synthetic molecular system dissolved in an organic solvent. Signal enhancements for the source molecule larger than a factor of 2300 are obtained. In addition, we show that bulk 13C hyperpolarization of the solvent can be generated via spontaneous 13C-13C spin diffusion at natural abundance.

2.
J Am Chem Soc ; 146(18): 12587-12594, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38685488

RESUMO

Triphenylphosphine (PPh3) is a ubiquitous ligand in organometallic chemistry that has been shown to give enhanced 31P NMR signals at high magnetic field via a scalar-dominated Overhauser effect dynamic nuclear polarization (OE DNP). However, PPh3 can only be polarized via DNP in the free form, while the coordinated form is DNP-inactive. Here, we demonstrate the possibility of enhancing the 31P NMR signals of coordinated PPh3 in metal complexes in solution at room temperature by combining Overhauser effect DNP and chemical exchange between the free and coordinated PPh3 forms. With this method, we successfully obtain 31P DNP enhancements of up to 2 orders of magnitude for the PPh3 ligands in Rh(I), Ru(II), Pd(II), and Pt(II) complexes, and we show that the DNP enhancements can be used to determine the activation energy of the ligand exchange reaction.

3.
J Am Chem Soc ; 146(14): 9554-9563, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38548624

RESUMO

Lanthanides are versatile modulators of optoelectronic properties owing to their narrow optical emission spectra across the visible and near-infrared range. Their use in metal halide perovskites (MHPs) has recently gained prominence, although their fate in these materials has not yet been established at the atomic level. We use cesium-133 solid-state NMR to establish the speciation of all nonradioactive lanthanide ions (La3+, Ce3+, Pr3+, Nd3+, Sm3+, Sm2+, Eu3+, Eu2+, Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+) in microcrystalline CsPbCl3. Our results show that all lanthanides incorporate into the perovskite structure of CsPbCl3 regardless of their oxidation state (+2, +3).

4.
J Magn Reson ; 360: 107645, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401477

RESUMO

Dynamic nuclear polarization (DNP) combined with high magnetic fields and fast magic angle spinning (MAS) has opened up a new avenue for the application of exceptionally sensitive 1H NMR detection schemes to study protonated solids. Recently, it has been shown that DNP experiments at fast MAS rates lead to slower spin diffusion and hence reduced DNP enhancements for impregnated materials. However, DNP enhancements alone do not determine the overall sensitivity of a NMR experiment. Here we measure the overall sensitivity of one-dimensional 1H detected relayed DNP experiments as a function of the MAS rate in the 20-60 kHz regime using 0.7 mm diameter rotors at 21.2 T. Although faster MAS rates are detrimental for the DNP enhancement on the target material, due to slower spin diffusion, we find that with increasing spinning rates the gain in sensitivity due to 1H line-narrowing and the folding-in of sideband intensity compensates a large part of the loss of overall hyperpolarization. We find that sensitivity depends on the atomic site in the molecule, and is maximised at between 40 and 50 kHz MAS for the sample of L-histidine.HCl·H2O studied here. There is a 10-20 % difference in sensitivity between the optimum MAS rate and the fastest rate currently accessible (60 kHz).

5.
Angew Chem Int Ed Engl ; 63(13): e202314856, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38305510

RESUMO

Bandgap-tuneable mixed-halide 3D perovskites are of interest for multi-junction solar cells, but suffer from photoinduced spatial halide segregation. Mixed-halide 2D perovskites are more resistant to halide segregation and are promising coatings for 3D perovskite solar cells. The properties of mixed-halide compositions depend on the local halide distribution, which is challenging to study at the level of single octahedra. In particular, it has been suggested that there is a preference for occupation of the distinct axial and equatorial halide sites in mixed-halide 2D perovskites. 207 Pb NMR can be used to probe the atomic-scale structure of lead-halide materials, but although the isotropic 207 Pb shift is sensitive to halide stoichiometry, it cannot distinguish configurational isomers. Here, we use 2D isotropic-anisotropic correlation 207 Pb NMR and relativistic DFT calculations to distinguish the [PbX6 ] configurations in mixed iodide-bromide 3D FAPb(Br1-x Ix )3 perovskites and 2D BA2 Pb(Br1-x Ix )4 perovskites based on formamidinium (FA+ ) and butylammonium (BA+ ), respectively. We find that iodide preferentially occupies the axial site in BA-based 2D perovskites, which may explain the suppressed halide mobility.

6.
Angew Chem Int Ed Engl ; 63(9): e202317337, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38193258

RESUMO

We evaluate the overall sensitivity gains provided by a series of eighteen nitroxide biradicals for dynamic nuclear polarization (DNP) solid-state NMR at 9.4 T and 100 K, including eight new biradicals. We find that in the best performing group the factors contributing to the overall sensitivity gains, namely the DNP enhancement, the build-up time, and the contribution factor, often compete with each other leading to very similar overall sensitivity across a range of biradicals. NaphPol and HydroPol are found to provide the best overall sensitivity factors, in organic and aqueous solvents respectively. One of the new biradicals, AMUPolCbm, provides high sensitivity for all three solvent formulations measured here, and can be considered to be a "universal" polarizing agent.

7.
Chimia (Aarau) ; 77(4): 212-216, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38047798

RESUMO

Magic angle spinning (MAS) in 1H NMR has allowed progress from featureless spectra in static samples to linewidths of a few hundreds of Hertz for powdered solids at the fastest spinning rates available today (100-150 kHz). While this is a remarkable improvement, this level of resolution is still limiting to the widespread use of 1H NMR for complex systems. This review will discuss two recent alternative strategies that have significantly improved 1H resolution, when combined with fast MAS. The first is based on anti-z-COSY, a 2D experiment originally used for J decoupling in liquids, which removes residual broadening due to splittings caused by imperfect coherent averaging of MAS. The second strategy is to obtain pure isotropic proton (PIP) spectra in solids, by parametrically mapping any residual broadening due to imperfect averaging into a second dimension of a multidimensional correlation spectrum.

8.
Mol Pharm ; 20(11): 5682-5689, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37782000

RESUMO

Protein-based drugs are becoming increasingly important, but there are challenges associated with their formulation (for example, formulating stable inhalable aerosols while maintaining the proper long-term stability of the protein). Determining the morphology of multicomponent, protein-based drug formulations is particularly challenging. Here, we use dynamic nuclear polarization (DNP) solid-state NMR spectroscopy to determine the hierarchy of components within spray-dried particles containing protein, trehalose, leucine, and trileucine. DNP NMR was applied to these formulations to assess the localization of the components within the particles. We found a consistent scheme, where trehalose and the protein are co-located within the same phase in the core of the particles and leucine and trileucine are distributed in separate phases at the surface of the particles. The description of the hierarchy of the organic components determined by DNP NMR enables the rationalization of the performance of the formulation.


Assuntos
Excipientes , Trealose , Leucina/química , Trealose/química , Excipientes/química , Aerossóis/química , Espectroscopia de Ressonância Magnética , Pós/química , Administração por Inalação , Tamanho da Partícula
9.
J Magn Reson ; 355: 107557, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37776831

RESUMO

The role of 1H solid-state NMR in structure elucidation of solids is becoming more preponderant, particularly as faster magic-angle spinning rates (MAS) become available which improve 1H detected assignment strategies. However, current 1H spectral resolution is still relatively poor, with linewidths of typically a few hundred Hz, even at the fastest rates available today. Here we detail and assess the factors limiting proton linewidths and line shapes in MAS experiments with five different samples, exemplifying the different sources of broadening that affect the residual linewidth. We disentangle the different contributions through one- and two-dimensional experiments: by using dilution to identify the contribution of ABMS; by using extensive deuteration to identify the dipolar contributions; and by using variable MAS rates to determine the ratio between homogeneous and inhomogeneous components. We find that the overall widths and the nature of the different contributions to the linewidths can vary very considerably. While we find that faster spinning always yields narrower lines and longer coherence lifetimes, we also find that for some resonances the dipolar contribution is no longer dominant at 100 kHz MAS. When the inhomogeneous sources of broadening, such as ABMS and chemical shift disorder, are dominant, two-dimensional 1H-1H correlation experiments yield better resolution for assignment. Particularly the extraction of the antidiagonal of a 2D peak will remove any correlated inhomogeneous broadening, giving substantially narrower 1H linewidths.

10.
Nat Commun ; 14(1): 5138, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612269

RESUMO

Structure determination of amorphous materials remains challenging, owing to the disorder inherent to these materials. Nuclear magnetic resonance (NMR) powder crystallography is a powerful method to determine the structure of molecular solids, but disorder leads to a high degree of overlap between measured signals, and prevents the unambiguous identification of a single modeled periodic structure as representative of the whole material. Here, we determine the atomic-level ensemble structure of the amorphous form of the drug AZD4625 by combining solid-state NMR experiments with molecular dynamics (MD) simulations and machine-learned chemical shifts. By considering the combined shifts of all 1H and 13C atomic sites in the molecule, we determine the structure of the amorphous form by identifying an ensemble of local molecular environments that are in agreement with experiment. We then extract and analyze preferred conformations and intermolecular interactions in the amorphous sample in terms of the stabilization of the amorphous form of the drug.

11.
J Am Chem Soc ; 145(29): 16109-16117, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37440302

RESUMO

Structure determination of molecular solids through NMR crystallography relies on the generation of a comprehensive set of candidate crystal structures and on the comparison of chemical shifts computed for those candidates with experimental values. Exploring the polymorph landscape of molecular solids requires extensive computational power, which leads to a significant bottleneck in the generation of the set of candidate crystals by crystal structure prediction (CSP) protocols. Here, we use a database of crystal structures with associated chemical shifts to construct three-dimensional interaction maps in molecular crystals directly derived from a molecular structure and its associated set of experimentally measured chemical shifts. We show how the maps obtained can be used to identify structural constraints for accelerating CSP protocols and to evaluate the likelihood of candidate crystal structures without requiring DFT-level chemical shift computations.

12.
J Magn Reson ; 353: 107509, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331306

RESUMO

Dynamic nuclear polarisation (DNP) of solids doped with high-spin metal ions, such as Gd3+, is a useful strategy to enhance the nuclear magnetic resonance (NMR) sensitivity for these samples. Spin diffusion can relay polarisation throughout a sample, which is most effective for dense 1H networks, while the efficiency of DNP using Gd3+ depends on the symmetry of the metal site. Here, we investigate cubic In(OH)3 as a high-symmetry, proton-containing material for endogenous Gd DNP. A 1H enhancement of up to 9 is demonstrated and harnessed to measure the 17O spectrum at natural abundance. The enhancement is interpreted in terms of clustering of the Gd3+ dopants and the local reduction in symmetry of the metal site induced by proton disorder, as demonstrated by quadrupolar 115In NMR. This is the first example of 1H DNP using Gd3+ dopants in an inorganic solid.

13.
J Am Chem Soc ; 145(27): 14874-14883, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37366803

RESUMO

Low sensitivity is the primary limitation to extending nuclear magnetic resonance (NMR) techniques to more advanced chemical and structural studies. Photochemically induced dynamic nuclear polarization (photo-CIDNP) is an NMR hyperpolarization technique where light is used to excite a suitable donor-acceptor system, creating a spin-correlated radical pair whose evolution drives nuclear hyperpolarization. Systems that exhibit photo-CIDNP in solids are not common, and this effect has, up to now, only been observed for 13C and 15N nuclei. However, the low gyromagnetic ratio and natural abundance of these nuclei trap the local hyperpolarization in the vicinity of the chromophore and limit the utility for bulk hyperpolarization. Here, we report the first example of optically enhanced solid-state 1H NMR spectroscopy in the high-field regime. This is achieved via photo-CIDNP of a donor-chromophore-acceptor molecule in a frozen solution at 0.3 T and 85 K, where spontaneous spin diffusion among the abundant strongly coupled 1H nuclei relays polarization through the whole sample, yielding a 16-fold bulk 1H signal enhancement under continuous laser irradiation at 450 nm. These findings enable a new strategy for hyperpolarized NMR beyond the current limits of conventional microwave-driven DNP.

14.
J Phys Chem C Nanomater Interfaces ; 127(23): 11094-11102, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37342202

RESUMO

The intrinsic low sensitivity of nuclear magnetic resonance (NMR) experiments limits their utility for structure determination of materials. Dynamic nuclear polarization (DNP) under magic angle spinning (MAS) has shown tremendous potential to overcome this key limitation, enabling the acquisition of highly selective and sensitive NMR spectra. However, so far, DNP methods have not been explored in the context of inorganic lead halide perovskites, which are a leading class of semiconductor materials for optoelectronic applications. In this work, we study cesium lead chloride and quantitatively compare DNP methods based on impregnation with a solution of organic biradicals with doping of high-spin metal ions (Mn2+) into the perovskite structure. We find that metal-ion DNP provides the highest bulk sensitivity in this case, while highly surface-selective NMR spectra can be acquired using impregnation DNP. The performance of both methods is explained in terms of the relaxation times, particle size, dopant concentration, and surface wettability. We envisage the future use of DNP NMR approaches in establishing structure-activity relationships in inorganic perovskites, especially for mass-limited samples such as thin films.

15.
Angew Chem Int Ed Engl ; 62(31): e202304844, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37222433

RESUMO

The sensitivity of NMR spectroscopy is considerably enhanced by dynamic nuclear polarization (DNP). In DNP polarization is transferred from unpaired electrons of a polarizing agent to nearby proton spins. In solids, this transfer is followed by the transport of hyperpolarization to the bulk via 1 H-1 H spin diffusion. The efficiency of these steps is critical to obtain high sensitivity gains, but the pathways for polarization transfer in the region near the unpaired electron spins are unclear. Here we report a series of seven deuterated and one fluorinated TEKPol biradicals to probe the effect of deprotonation on MAS DNP at 9.4 T. The experimental results are interpreted with numerical simulations, and our findings support that strong hyperfine couplings to nearby protons determine high transfer rates across the spin diffusion barrier to achieve short build-up times and high enhancements. Specifically, 1 H DNP build-up times increase substantially with TEKPol isotopologues that have fewer hydrogen atoms in the phenyl rings, suggesting that these protons play a crucial role transferring the polarization to the bulk. Based on this new understanding, we have designed a new biradical, NaphPol, which yields significantly increased NMR sensitivity, making it the best performing DNP polarizing agent in organic solvents to date.

16.
ACS Energy Lett ; 8(4): 1662-1670, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37090170

RESUMO

Photoinduced halide segregation hinders widespread application of three-dimensional (3D) mixed-halide perovskites. Much less is known about this phenomenon in lower-dimensional systems. Here, we study photoinduced halide segregation in lower-dimensional mixed iodide-bromide perovskites (PEA2MA n-1Pb n (Br x I1-x )3n+1, with PEA+: phenethylammonium and MA+: methylammonium) through time-dependent photoluminescence (PL) spectroscopy. We show that layered two-dimensional (2D) structures render additional stability against the demixing of halide phases under illumination. We ascribe this behavior to reduced halide mobility due to the intrinsic heterogeneity of 2D mixed-halide perovskites, which we demonstrate via 207Pb solid-state NMR. However, the dimensionality of the 2D phase is critical in regulating photostability. By tracking the PL of multidimensional perovskite films under illumination, we find that while halide segregation is largely inhibited in 2D perovskites (n = 1), it is not suppressed in quasi-2D phases (n = 2), which display a behavior intermediate between 2D and 3D and a peculiar absence of halide redistribution in the dark that is only induced at higher temperature for the quasi-2D phase.

17.
J Am Chem Soc ; 145(17): 9700-9707, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37075271

RESUMO

The physical properties of many modern multi-component materials are determined by their internal microstructure. Tools capable of characterizing complex nanoscale architectures in composite materials are, therefore, essential to design materials with targeted properties. Depending on the morphology and the composition, structures may be measured by laser diffraction, scattering methods, or by electron microscopy. However, it can be difficult to obtain contrast in materials where all the components are organic, which is typically the case for formulated pharmaceuticals, or multi-domain polymers. In nuclear magnetic resonance (NMR) spectroscopy, chemical shifts allow a clear distinction between organic components and can in principle provide the required chemical contrast. Here, we introduce a method to obtain radial images of the internal structure of multi-component particles from NMR measurements of the relay of nuclear hyperpolarization obtained from dynamic nuclear polarization. The method is demonstrated on two samples of hybrid core-shell particles composed of a core of polystyrene with a shell of mesostructured silica filled with the templating agent CTAB and is shown to yield accurate images of the core-shell structures with a nanometer resolution.

18.
Angew Chem Int Ed Engl ; 62(21): e202301963, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36929691

RESUMO

One key bottleneck of solid-state NMR spectroscopy is that 1 H NMR spectra of organic solids are often very broad due to the presence of a strong network of dipolar couplings. We have recently suggested a new approach to tackle this problem. More specifically, we parametrically mapped errors leading to residual dipolar broadening into a second dimension and removed them in a correlation experiment. In this way pure isotropic proton (PIP) spectra were obtained that contain only isotropic shifts and provide the highest 1 H NMR resolution available today in rigid solids. Here, using a deep-learning method, we extend the PIP approach to a second dimension, and for samples of L-tyrosine hydrochloride and ampicillin we obtain high resolution 1 H-1 H double-quantum/single-quantum dipolar correlation and spin-diffusion spectra with significantly higher resolution than the corresponding spectra at 100 kHz MAS, allowing the identification of previously overlapped isotropic correlation peaks.

19.
J Am Chem Soc ; 145(2): 978-990, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36580303

RESUMO

The organic cations in hybrid organic-inorganic perovskites rotate rapidly inside the cuboctahedral cavities formed by the inorganic lattice, influencing optoelectronic properties. Here, we provide a complete quantitative picture of cation dynamics for formamidinium-based perovskites and mixed-cation compositions, which are the most widely used and promising absorber layers for perovskite solar cells today. We use 2H and 14N quadrupolar solid-state NMR relaxometry under magic-angle spinning to determine the activation energy (Ea) and correlation time (τc) at room temperature for rotation about each principal axis of a series of organic cations. Specifically, we investigate methylammonium (MA+), formamidinium (FA+), and guanidinium (GUA+) cations in current state-of-the-art single- and multi-cation perovskite compositions. We find that MA+, FA+, and GUA+ all have at least one component of rotation that occurs on the picosecond timescale at room temperature, with MA+ and GUA+ also exhibiting faster and slower components, respectively. The cation dynamics depend on the symmetry of the inorganic lattice but are found to be insensitive to the degree of cation substitution. In particular, the FA+ rotation is invariant across all compositions studied here, when sufficiently above the phase transition temperature. We further identify an unusual relaxation mechanism for the 2H of MA+ in mechanosynthesized FAxMA1-xPbI3, which was found to result from physical diffusion to paramagnetic defects. This precise picture of cation dynamics will enable better understanding of the relationship between the organic cations and the optoelectronic properties of perovskites, guiding the design principles for more efficient perovskite solar cells in the future.

20.
Angew Chem Int Ed Engl ; 62(8): e202216607, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36562545

RESUMO

The resolution of proton solid-state NMR spectra is usually limited by broadening arising from dipolar interactions between spins. Magic-angle spinning alleviates this broadening by inducing coherent averaging. However, even the highest spinning rates experimentally accessible today are not able to completely remove dipolar interactions. Here, we introduce a deep learning approach to determine pure isotropic proton spectra from a two-dimensional set of magic-angle spinning spectra acquired at different spinning rates. Applying the model to 8 organic solids yields high-resolution 1 H solid-state NMR spectra with isotropic linewidths in the 50-400 Hz range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...