Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(38): eadj6438, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37729407

RESUMO

Saturated fatty acids are abundant organic compounds in oceans and sea sprays. Their photochemical reactions induced by solar radiation have recently been found as an abiotic source of volatile organic compounds, which serve as precursors of secondary organic aerosols. However, photoabsorption of wavelengths longer than 250 nanometers in liquid saturated fatty acids remains unexplained, despite being first reported in 1931. Here, we demonstrate that the previously reported absorption of wavelengths longer than 250 nanometers by liquid nonanoic acid [CH3(CH2)7COOH)] originates from traces of impurities (0.1% at most) intrinsically contained in nonanoic acid reagents. Absorption cross sections of nonanoic acid newly obtained here indicate that the upper limit of its photolysis rate is three to five orders of magnitude smaller than those for atmospherically relevant carbonyl compounds.

2.
J Phys Chem A ; 127(13): 2975-2985, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36952246

RESUMO

Levoglucosan (Levo) is a major saccharide formed by the combustion of cellulosic materials. Levo was once considered an inert tracer of biomass-burning aerosols; however, recent studies have indicated that Levo in atmospheric condensed phases does indeed react with atmospheric reactants. Here, we report the results of a time-resolved mass spectrometric study of the oxidation of Levo in aqueous solutions with ferrous ion (Fe2+)/hydrogen peroxide (H2O2) (i.e., Fenton's reagent). The major products of the Fenton oxidation of Levo were oxygen-atom-incorporated species (Levo+nO, n = 1-3). Experiments using Levo-d7 (all C-H bonds replaced by C-D) and D2O or H218O as the solvent revealed that OH predominantly (∼85% of all C-H bonds) abstracts H atoms attached to the carbon atoms possessing a hydroxyl moiety (-OH), which is followed by the formation of a carbonyl moiety (-C═O). Subsequent hydration of these products results in the formation of geminal diols (detected as Levo+1O species). Our results also suggest the formation of α-hydroxy-hydroperoxides (detected as Levo+2O species) that exist in equilibrium, with the compounds possessing a -C═O moiety and with H2O2. H-abstractions from -O-H were found to be a minor reaction pathway (≤5% of all H-abstractions). The present proposed oxidation mechanisms improve our understanding of how the chemical components of atmospheric condensed phases change by metal-catalyzed aging processes without sunlight.

3.
J Phys Chem Lett ; 13(35): 8290-8297, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36073084

RESUMO

Ultraviolet (UV) photolysis of fatty acid surfactants─which cover the surfaces of atmospheric liquid aerosols and are found in the oceans─such as nonanoic acid (NA) has recently been suggested as a source of hydroxyl (OH) radicals in the troposphere. We used laser-induced fluorescence to directly observe OH radicals desorbed from the surface of neat liquid NA as a primary photoproduct following 213 nm irradiation. The upper limit of photoreaction cross section for the OH radical desorption was estimated to be 9.0(4.1) × 10-22 cm2, which is only 1.2 ± 0.8% of the photoreaction cross section established for the photolysis of gas-phase acetic acid monomers. Vibrational sum-frequency generation spectroscopy for liquid NA revealed the hydrogen-bonded, cyclic, dimer structure of the NA molecules at the liquid surface. This dimerization can inhibit the formation of OH radicals and lead the present low photochemical reactivity of liquid NA.

4.
J Phys Chem A ; 126(32): 5386-5397, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35921086

RESUMO

1,2,4-Trioxolanes, known as secondary ozonides (SOZs), are key products of ozonolysis of biogenic terpenoids. Functionalized terpenoid-derived SOZs are readily taken up into atmospheric aerosols; however, their condensed-phase fates remain unknown. Here, we report the results of a time-dependent mass spectrometric investigation into the liquid-phase fates of C10 and C13 SOZs synthesized by ozonolysis of a C10 monoterpene alcohol (α-terpineol) in water:acetone (1:1 = vol:vol) mixtures. Isomerization of Criegee intermediates and bimolecular reaction of Criegee intermediates with acetone produced C10 and C13 SOZs, respectively, which were detected as their Na+-adducts by positive-ion electrospray mass spectrometry. Use of CD3COCD3, D2O, and H218O solvents enabled identification of three types of C13 SOZs (aldehyde, ketone, and lactol) and other products. These SOZs were surprisingly stable in water:acetone (1:1) mixtures at T = 298 K, with some persisting for at least a week. Theoretical calculations supported the high stability of the lactol-type C13 SOZ formed from the aldehyde-type C13 SOZ via intramolecular rearrangement. The present results suggest that terpenoid-derived SOZs can persist in atmospheric condensed phases, potentially until they are delivered to the epithelial lining fluid of the pulmonary alveoli via inhaled particulate matter, where they may exert hitherto unrecognized adverse health effects.


Assuntos
Ozônio , Terpenos , Acetona , Aldeídos , Compostos Heterocíclicos , Ozônio/química , Água
5.
J Phys Chem Lett ; 13(29): 6680, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35848766

RESUMO

A recent Letter in this Journal (Gladich et al. J. Phys. Chem. Lett. 13, 2994-3001) reported that photoelectron spectroscopy could not detect any products on the surface of aqueous Fe2+ jets dosed with gaseous hydrogen peroxide. The Letter however concluded that Fe(aq)2+ ions react with H2O2(g) at the water-vapor interface to produce the same Fe3+ + HO• products as their reaction with H2O2(aq) in bulk water. We argue that this conclusion is untenable because nothing can be asserted about undetected species.

6.
Phys Chem Chem Phys ; 24(19): 11562-11572, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35506905

RESUMO

The oxidation of volatile organic compounds in the atmosphere produces organic hydroperoxides (ROOHs) that typically possess not only -OOH but also other functionalities such as -OH and -C(O). Because of their high hydrophilicity and low volatility, such multifunctionalized ROOHs are expected to be taken up in atmospheric condensed phases such as aerosols and fog/cloud droplets. However, the characteristics of ROOHs that control their fates and lifetimes in liquid phases are poorly understood. Here, we report a study of the liquid-phase decomposition kinetics of multifunctionalized α-alkoxyalkyl-hydroperoxides (α-AHs) that possessed an ether, a carbonyl, a hydroperoxide, and two hydroxy groups. These ROOHs were synthesized by ozonolysis of α-terpineol in water in the presence of 1,3-propanediol, 1,4-butanediol, or 1,5-pentanediol. Their decomposition products were detected as chloride anion adducts by electrospray mass spectrometry as a function of reaction time. Experiments using H218O and D2O revealed that hemiacetal species were α-AH decomposition products that further transformed into other products. The result that the rate coefficients (k) of the decomposition of C15 α-AHs increased exponentially from pH 5.0 to 3.9 was consistent with an H+-catalyzed decomposition mechanism. The temperature dependence of k and an Arrhenius plot yielded activation energies (Ea) of 15.7 ± 0.8, 15.0 ± 2.4, and 15.9 ± 0.3 kcal mol-1 for the decomposition of α-AHs derived from the reaction of α-terpineol CIs with 1,3-propanediol, 1,4-butanediol, and 1,5-pentanediol, respectively. The determined Ea values were compared with those of related ROOHs. We found that alkyl chain length is not a critical factor for the decomposition mechanism, whereas the presence of additional -OH groups would modulate the reaction barriers to decomposition via the formation of hydrogen-bonding with surrounding water molecules. The derived Ea values for the decomposition of the multifunctionalized, terpenoid-derived α-AHs will facilitate atmospheric modeling by serving as representative values for ROOHs in atmospheric condensed phases.


Assuntos
Atmosfera , Peróxido de Hidrogênio , Aerossóis , Álcoois , Água
7.
Biol Lett ; 18(5): 20210629, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35506238

RESUMO

One of the characteristic aspects of odour sensing in humans is the activation of olfactory receptors in a slightly different manner in response to different enantiomers. Here, we focused on whether plants showed enantiomer-specific response similar to that in humans. We exposed Arabidopsis seedlings to methanol (control) and (+)- or (-)-borneol, and found that only (+)-borneol reduced the root length. Furthermore, the root-tip width was more increased upon (+)-borneol exposure than upon (-)-borneol exposure. In addition, root-hair formation was observed near the root tip in response to (+)-borneol. Auxin signalling was strongly reduced in the root tip following exposure to (+)-borneol, but was detected following exposure to (-)-borneol and methanol. Similarly, in the root tip, the activity of cyclin B1:1 was detected on exposure to (-)-borneol and methanol, but not on exposure to (+)-borneol, indicating that (+)-borneol inhibits the meristematic activity in the root. These results partially explain the (+)-borneol-specific reduction in the root length of Arabidopsis. Our results indicate the presence of a sensing system specific for (+)-borneol in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Canfanos , Humanos , Ácidos Indolacéticos/farmacologia , Meristema/fisiologia , Metanol , Raízes de Plantas/fisiologia
8.
Environ Sci Atmos ; 2(2): 241-251, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35419522

RESUMO

Organic hydroperoxides (ROOHs) play key roles in the atmosphere as a reactive intermediate species. Due to the low volatility and high hydrophilicity, ROOHs are expected to reside in atmospheric condensed phases such as aerosols, fogs, and cloud droplets. The decomposition mechanisms of ROOHs in the liquid phase are, however, still poorly understood. Here we report a temperature-dependent kinetics and theoretical calculation study of the aqueous-phase decompositions of C12 or C13 α-alkoxyalkyl-hydroperoxides (α-AHs) derived from ozonolysis of α-terpineol in the presence of 1-propanol, 2-propanol, and ethanol. We found that the temporal profiles of α-AH signals, detected as chloride-adducts by negative ion electrospray mass spectrometry, showed single-exponential decay, and the derived first-order rate coefficient k for α-AH decomposition increased as temperature increased, e.g., k(288 K) = (5.3 ± 0.2) × 10-4 s-1, k(298 K) = (1.2 ± 0.3) × 10-3 s-1, k(308 K) = (2.1 ± 1.4) × 10-3 s-1 for C13 α-AHs derived from the reaction of α-terpineol Criegee intermediates with 1-propanol in the solution at pH 4.5. Arrhenius plot analysis yielded an activation energy (E a) of 12.3 ± 0.6 kcal mol-1. E a of 18.7 ± 0.3 and 13.8 ± 0.9 kcal mol-1 were also obtained for the decomposition of α-AHs (at pH 4.5) derived from the reaction of α-terpineol Criegee intermediates with 2-propanol and with ethanol, respectively. Based on the theoretical kinetic and thermodynamic calculations, we propose that a proton-catalyzed mechanism plays a central role in the decomposition of these α-AHs in acidic aqueous organic media, while water molecules may also participate in the decomposition pathways and affect the kinetics. The decomposition of α-AHs could act as a source of H2O2 and multifunctionalized species in atmospheric condensed phases.

9.
Environ Sci Technol ; 55(19): 12893-12901, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34525797

RESUMO

We report the results of a mass spectrometric study of the effects of atmospherically relevant metal ions on the decomposition of α-hydroxyalkyl-hydroperoxides (α-HHs) derived from ozonolysis of α-terpineol in aqueous solutions. By direct mass spectrometric detection of chloride adducts of α-HHs, we assessed the temporal profiles of α-HHs and other products in the presence of metal ions. In addition, reactions between α-HHs and FeCl2 in the presence of excess DMSO showed that the amount of hydroxyl radicals formed in a mixture of α-terpineol, O3, and FeCl2 was 5.7 ± 0.8% of the amount formed in a mixture of H2O2 and FeCl2. The first-order rate constants for the decay of α-HHs produced by ozonolysis of α-terpineol in the presence of 5 mM acetate buffer at a pH of 5.1 ± 0.1 were determined to be (4.5 ± 0.1) × 10-4 s-1 (no metal ions), (4.7 ± 0.2) × 10-4 s-1 (with 0.05 mM Fe2+), (4.7 ± 0.1) × 10-4 s-1 (with 0.05 mM Zn2+), and (4.8 ± 0.2) × 10-4 s-1 (with 0.05 mM Cu2+). We propose that in acidic aqueous media, the reaction of α-HHs with Fe2+ is outcompeted by H+-catalyzed decomposition of α-HHs, which produces the corresponding aldehydes and H2O2, which can in turn react with Fe2+ to form hydroxyl radicals.


Assuntos
Álcoois , Peróxido de Hidrogênio , Radical Hidroxila , Terpenos , Água
10.
J Phys Chem A ; 125(21): 4513-4523, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-33904735

RESUMO

The fates of organic hydroperoxides (ROOHs) in atmospheric condensed phases are key to understanding the oxidative and toxicological potentials of particulate matter. Recently, mass spectrometric detection of ROOHs as chloride anion adducts has revealed that liquid-phase α-hydroxyalkyl hydroperoxides, derived from hydration of carbonyl oxides (Criegee intermediates), decompose to geminal diols and H2O2 over a time frame that is sensitively dependent on the water content, pH, and temperature of the reaction solution. Based on these findings, it has been proposed that H+-catalyzed conversion of ROOHs to ROHs + H2O2 is a key process for the decomposition of ROOHs that bypasses radical formation. In this perspective, we discuss our current understanding of the aqueous-phase decomposition of atmospherically relevant ROOHs, including ROOHs derived from reaction between Criegee intermediates and alcohols or carboxylic acids, and of highly oxygenated molecules (HOMs). Implications and future challenges are also discussed.


Assuntos
Atmosfera/química , Peróxidos/química , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Peróxidos/análise , Termodinâmica , Água/química
11.
Phys Chem Chem Phys ; 23(8): 4605-4614, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33620039

RESUMO

In the atmosphere, carbonyl oxides known as Criegee intermediates are produced mainly by ozonolysis of volatile organic compounds containing C[double bond, length as m-dash]C double bonds, such as biogenic terpenoids. Criegee intermediates can react with OH-containing species to produce labile organic hydroperoxides (ROOHs) that are taken up into atmospheric condensed phases. Besides water, alcohols are an important reaction partner of Criegee intermediates and can convert them into α-alkoxyalkyl-hydroperoxides (α-AHs), R1R2C(-OOH)(-OR'). Here, we report a study on the aqueous-phase fates of α-AHs derived from ozonolysis of α-terpineol in the presence of methanol, ethanol, 1-propanol, and 2-propanol. The α-terpineol α-AHs and the decomposition products were detected as their chloride adducts by electrospray mass spectrometry as a function of reaction time. Our discovery that the rate of decomposition of α-AHs increased as the pH decreased from 5.9 to 3.8 implied that the decomposition mechanism was catalyzed by H+. The use of isotope solvent experiments revealed that a primary decomposition product of α-AHs in an acidic aqueous solution was a hemiacetal R1R2C(-OH)(-OR') species that was further transformed into other products such as lactols. The proposed H+-catalyzed decomposition of α-AHs, which provides H2O2 and multifunctional species in ambient aerosol particles, may be faster than other degradation processes (e.g., photolysis by solar radiation).

12.
J Phys Chem A ; 124(49): 10288-10295, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33231452

RESUMO

Ozonolysis of unsaturated organic species with water produces α-hydroxyalkyl-hydroperoxides (α-HHs), which are reactive intermediates that lead to the formation of H2O2 and multifunctionalized species in atmospheric condensed phases. Here, we report temperature-dependent rate coefficients (k) for the aqueous-phase decomposition of α-terpineol α-HHs at 283-318 K and terpinen-4-ol α-HHs at 313-328 K. The temporal profiles of α-HH signals, detected as chloride adducts by negative-ion electrospray mass spectrometry, showed single-exponential decay, and the derived first-order k for α-HH decomposition increased as temperature increased, e.g., k(288 K) = (4.7 ± 0.2) × 10-5, k(298 K) = (1.5 ± 0.4) × 10-4, k(308 K) = (3.4 ± 0.9) × 10-4, k(318 K) = (1.0 ± 0.2) × 10-3 s-1 for α-terpineol α-HHs at pH 6.1. Arrhenius plot analysis yielded activation energies of 17.9 ± 0.7 (pH 6.1) and 17.1 ± 0.2 kcal mol-1 (pH 6.2) for the decomposition of α-terpineol and terpinen-4-ol α-HHs, respectively. Activation energies of 18.6 ± 0.2 and 19.2 ± 0.5 kcal mol-1 were also obtained for the decomposition of α-terpineol α-HHs in acidified water at pH 5.3 and 4.5, respectively. Theoretical kinetic and thermodynamic calculations confirmed that both water-catalyzed and proton-catalyzed mechanisms play important roles in the decomposition of these α-HHs. The relatively strong temperature dependence of k suggests that the lifetime of these α-HHs in aqueous phases (e.g., aqueous aerosols, fog, cloud droplets, wet films) is controlled not only by the water content and pH but also by the temperature of these media.

13.
Environ Sci Technol ; 54(17): 10561-10569, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32786584

RESUMO

In the atmosphere, most biogenic terpenes undergo ozonolysis in the presence of water to form reactive α-hydroxyalkyl-hydroperoxides (α-HHs), and the lifetimes of these α-HHs are a key parameter for understanding the processes that occur during the aging of atmospheric particles. We previously reported that α-HHs generated by ozonolysis of terpenes decompose in water to give H2O2 and the corresponding aldehydes, which undergo hydration to form gem-diols. Herein, we report that this decomposition process was dramatically accelerated by acidification of the water with oxalic, acetic, hexanoic, cis-pinonic, or hydrochloric acid. In acidic solution, the temporal profiles of the α-HHs, detected as their chloride adducts by electrospray mass spectrometry, showed single-exponential decays in the pH range from 4.1 to 6.1, and the first-order rate coefficients (k) for the decays increased with decreasing pH. The lifetime of the α-HH derived from α-terpineol was 128 min (k = (1.3 ± 0.4) × 10-4 s-1) at pH 6.1 but only 8 min (k = (2.1 ± 0.1) × 10-3 s-1) at pH 4.1. Because the rate coefficients increased as the pH decreased and the increase depended on pH rather than on the properties of the acid, we propose that the decomposition of the α-HHs in water was specifically catalyzed by H+. Fast H+-catalyzed decomposition of α-HHs could be an important source of H2O2 and multifunctionalized compounds found in ambient atmospheric particles.


Assuntos
Peróxido de Hidrogênio , Água , Atmosfera , Catálise , Prótons
14.
Environ Sci Technol ; 54(7): 3890-3899, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32131591

RESUMO

The α-hydroxyalkyl-hydroperoxides [R-(H)C(-OH)(-OOH), α-HH] produced in the ozonolysis of unsaturated organic compounds may contribute to secondary organic aerosol (SOA) aging. α-HHs' inherent instability, however, hampers their detection and a positive assessment of their actual role. Here we report, for the first time, the rates and products of the decomposition of the α-HHs generated in the ozonolysis of atmospherically important monoterpenes α-pinene (α-P), d-limonene (d-L), γ-terpinene (γ-Tn), and α-terpineol (α-Tp) in water/acetonitrile (W/AN) mixtures. We detect α-HHs and multifunctional decomposition products as chloride adducts by online electrospray ionization mass spectrometry. Experiments involving D2O and H218O, instead of H216O, and an OH-radical scavenger show that α-HHs decompose into gem-diols + H2O2 rather than free radicals. α-HHs decay mono- or biexponentially depending on molecular structure and solvent composition. e-Fold times, τ1/e, in water-rich solvent mixtures range from τ1/e = 15-45 min for monoterpene-derived α-HHs to τ1/e > 103 min for the α-Tp-derived α-HH. All τ1/e's dramatically increase in <20% (v/v) water. Decay rates of the α-Tp-derived α-HH in pure water increase at lower pH (2.3 ≤ pH ≤ 3.3). The hydroperoxides detected in day-old SOA samples may reflect their increased stability in water-poor media and/or the slow decomposition of α-HHs from functionalized terpenes.


Assuntos
Poluentes Atmosféricos , Ozônio , Aerossóis , Peróxido de Hidrogênio , Monoterpenos , Terpenos
15.
J Phys Chem Lett ; 11(1): 67-74, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31808704

RESUMO

The air-water interface plays central roles in "on-droplet" synthesis, living systems, and the atmosphere; however, what makes reactions at the interface specific is largely unknown. Here, we examined carbocationic reactions of monoterpene (C10H16 isomer) on an acidic water microjet by using spray ionization mass spectrometry. Gaseous monoterpenes are trapped in the uppermost layers of a water surface via proton transfer and then undergo a chain-propagation reaction. The oligomerization pathway of ß-pinene (ß-P), which showed prompt chain-propagation, is examined by simultaneous exposure to camphene (CMP). (CMP)H+ is the most stable isomer formed via rearrangement of (ß-P)H+ in the gas phase; however, no co-oligomerization was observed. This indicates that the oligomerization of (ß-P)H+ proceeded via ring-opening isomerization. Quantum chemical calculations for [carbocation-(H2O)n=1,2] complexes revealed that the ring-opened isomer is stabilized by hydrogen-π bonds. We propose that partial hydration is a key factor that makes the interfacial reaction unique.

16.
Chem Sci ; 10(35): 8253-8255, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31857888

RESUMO

Recently, Gallo et al. (Chem. Sci., 2019, 10, 2566) investigated whether the previously reported oligomerization of isoprene vapor on the surface of pH < 4 water in an electrospray ionization (ESI) mass spectrometer (J. Phys. Chem. A, 2012, 116, 6027 and Phys. Chem. Chem. Phys., 2018, 20, 15400) would also proceed in liquid isoprene-acidic water emulsions. Gallo et al. hypothesized that emulsified liquid isoprene would oligomerize on the surface of acidic water because, after all, isoprene, liquid or vapor, is always a hydrophobe. In their emulsion experiments, isoprene oligomers were to be detected by ex situ proton magnetic resonance (1H-NMR) spectrometry.

17.
J Phys Chem Lett ; 10(19): 5748-5755, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31498633

RESUMO

α-Hydroxyalkyl-hydroperoxides (α-HHs), from the addition of water to Criegee intermediates in the ozonolysis of olefins, are reactive components of organic aerosols. Assessing the fate of α-HHs in such media requires information on the rates and products of their reactions in aqueous organic matrixes. This information, however, is unavailable due to the lack of analytical techniques for the detection and identification of labile α-HHs. Here, we report the mass spectrometric detection (as Cl- adducts) of the α-HH produced in the ozonolysis of a C15 diolefin in water (W):acetonitrile (AN) mixtures of variable composition containing inert NaCl. α-HH decays into a gem-diol + H2O2 within τ1/e ≈ 52 min in 50% (v:v) water, but persists longer than a day in ≤10% water mixtures. The strong nonlinear dependence of τ1/e on solvent composition reveals that water content is a major factor controlling the fate of α-HHs in atmospheric particles. It also suggests that α-HH decomposes while embedded in WnANm clusters rather than randomly dissolved in molecularly homogeneous W:AN mixtures.

18.
ACS Omega ; 4(4): 7574-7580, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459850

RESUMO

Marine photosynthetic organisms emit organic gases, including the polyolefins isoprene (C5H8) and monoterpenes (MTPs, C10H16), into the boundary layer. Their atmospheric processing produces particles that influence cloud formation and growth and, as a result, the Earth's radiation balance. Here, we report that the heterogeneous ozonolysis of dissolved α-pinene by O3(g) on aqueous surfaces is dramatically accelerated by I-, an anion enriched in the ocean upper microlayer and sea spray aerosols (SSAs). In our experiments, liquid microjets of α-pinene solutions, with and without added I-, are dosed with O3(g) for τ < 10 µs and analyzed online by pneumatic ionization mass spectrometry. In the absence of I-, α-pinene does not detectably react with O3(g) under present conditions. In the presence of ≥ 0.01 mM I-, in contrast, new signals appear at m/z = 169 (C9H13O3 -), m/z = 183 (C10H15O3 -), m/z = 199 (C10H15O4 -), m/z = 311 (C10H16IO3 -), and m/z = 461 (C20H30IO4 -), plus m/z = 175 (IO3 -), and m/z = 381 (I3 -). Collisional fragmentation splits CO2 from C9H13O3 -, C10H15O3 - and C10H15O4 -, and I- plus IO- from C10H16IO3 - as expected from a trioxide IOOO•C10H16 - structure. We infer that the oxidative processing of α-pinene on aqueous surfaces is significantly accelerated by I- via the formation of IOOO- intermediates that are more reactive than O3. A mechanism in which IOOO- reacts with α-pinene (and likely with other unsaturated species) in competition with its isomerization to IO3 - accounts for present results and the fact that soluble iodine in SSA is mostly present as iodine-containing organic species rather than the thermodynamically more stable iodate. By this process, a significant fraction of biogenic MTPs and other unsaturated gases may be converted to water-soluble species rather than emitted to the atmosphere.

19.
J Phys Chem A ; 123(32): 7148-7155, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31329444

RESUMO

Acidity changes the physical properties of atmospheric aerosol particles and the mechanisms of reactions that occur therein and on the surface. Here, we used surface-sensitive pneumatic ionization mass spectrometry to investigate the effects of pH on the heterogeneous reactions of aqueous α-terpineol (C10H17OH), a representative monoterpene alcohol, with gaseous ozone. Rapid (≤10 µs) ozonolysis of α-terpineol produced Criegee intermediates (CIs, zwitterionic/diradical carbonyl oxides) on the surface of water microjets. We studied the effects of microjet bulk pH (1-11) on the formation of functionalized carboxylate and α-hydroxy-hydroperoxide chloride adduct (HH-Cl-) products generated by isomerization and hydration of α-terpineol CIs, respectively. Compared with the signal at pH ≈ 6, the mass spectral signal of HH-Cl- was less intense under both basic and more acidic conditions, whereas the intensity of the functionalized carboxylate signal increased with increasing pH up to 4 and then remained constant. The decrease of HH-Cl- signals at bulk pH values of >6 is attributable to the accumulation of OH- at the air-water interface that suppresses the relative abundance of hydrophilic HH and Cl-. The present study suggests that α-terpineol in ambient aqueous organic aerosols will be converted into much lower volatile and potentially toxic organic hydroperoxides during the heterogeneous ozonolysis.

20.
Environ Sci Technol ; 53(10): 5750-5757, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31017766

RESUMO

Ozone readily reacts with olefins with the formation of more reactive Criegee intermediates (CIs). The transient CIs impact HO x cycles, and they play a role in new particle formation in the troposphere. Oxidation by O3 occurs both in the gas-phase, in the liquid phase, and at air-water and air-aerosol interfaces. In light of the importance of O3 in environmental and engineered chemical transformations, we have investigated the ozonolysis mechanisms of a triolefin C15-alcohol, nerolidol (Nero, a biogenic sesquiterpene), at the air-water interface in the presence of acetonitrile. Surface-sensitive pneumatic ionization mass spectrometric detection of α-hydroxy-hydroperoxides and functionalized carboxylates, generated by the hydration and isomerization of CIs, respectively, enables us to evaluate the relative reactivity of each C=C toward O3. In addition, we compare bulk-phase ozonolysis chemistry to similar reactions taking place at the air-water interface. Our experimental results show that O3 reacts primarily with the (CH3)2C=CH- and -(CH3)C=CH- moieties (>∼98%), while the O3 attack on the terminal -HC=CH2 site (<∼2%) is a minor pathway during both interfacial and bulk ozonolysis. The presence of functionalized-carboxylates on interfaces but not in bulk-phase reactions with O3 indicates that the isomerization of the CIs is not hindered at the air-water interface due to the lower availability of water .


Assuntos
Ozônio , Sesquiterpenos , Aerossóis , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...