Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mineral Petrol ; 115(1): 1-19, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33519095

RESUMO

A multi-methodological study was conducted in order to provide further insight into the structural and compositional complexity of rare earth element (REE) fluorcarbonates, with particular attention to their correct assignment to a mineral species. Polycrystals from La Pita Mine, Municipality de Maripí, Boyacá Department, Colombia, show syntaxic intergrowth of parisite-(Ce) with röntgenite-(Ce) and a phase which is assigned to B 3 S 4 (i.e., bastnäsite-3-synchisite-4; still unnamed) fluorcarbonate. Transmission electron microscope (TEM) images reveal well-ordered stacking patterns of two monoclinic polytypes of parisite-(Ce) as well as heavily disordered layer sequences with varying lattice fringe spacings. The crystal structure refinement from single crystal X-ray diffraction data - impeded by twinning, complex stacking patterns, sequential and compositional faults - indicates that the dominant parisite-(Ce) polytype M 1 has space group Cc. Parisite-(Ce), the B 3 S 4 phase and röntgenite-(Ce) show different BSE intensities from high to low. Raman spectroscopic analyses of parisite-(Ce), the B 3 S 4 phase and röntgenite-(Ce) reveal different intensity ratios of the three symmetric CO3 stretching bands at around 1100 cm-1. We propose to non-destructively differentiate parisite-(Ce) and röntgenite-(Ce) by their 1092 cm-1 / 1081 cm-1 ν1(CO3) band height ratio.

2.
Phys Rev Lett ; 126(6): 065701, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33635684

RESUMO

We present a study on the phase stability of dense carbon dioxide (CO_{2}) at extreme pressure-temperature conditions, up to 6200 K within the pressure range 37±9 to 106±17 GPa. The investigations of high-pressure high-temperature in situ x-ray diffraction patterns recorded from laser-heated CO_{2}, as densified in diamond-anvil cells, consistently reproduced the exclusive formation of polymeric tetragonal CO_{2}-V at any condition achieved in repetitive laser-heating cycles. Using well-considered experimental arrangements, which prevent reactions with metal components of the pressure cells, annealing through laser heating was extended individually up to approximately 40 min per cycle in order to keep track of upcoming instabilities and changes with time. The results clearly exclude any decomposition of CO_{2}-V into the elements as previously suggested. Alterations of the Bragg peak distribution on Debye-Scherrer rings indicate grain coarsening at temperatures >4000 K, giving a glimpse of the possible extension of the stability of the polymeric solid phase.

3.
Inorg Chem ; 59(24): 17981-17991, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33245665

RESUMO

Orthorhombic ß-LiScGe2O6 single crystals were compressed hydrostatically up to 10.35 GPa using a diamond anvil cell and investigated in situ by means of X-ray diffraction and Raman spectroscopy. Crystal-structure investigations at ambient conditions and at high pressure show a structural transition from an orthopyroxene-type Pbca structure (a ≈ 18.43 Å, b ≈ 8.85 Å, and c ≈ 5.34 Å at 8.6 ± 0.1 GPa) to a postorthopyroxene type P21/c structure of the new dense γ-LiScGe2O6 (a ≈ 18.62 Å, b ≈ 8.85 Å, c ≈ 5.20 Å, and ß ≈ 93.1° at 9.5 ± 0.1 GPa). The structure refinements reveal displacive shifts of O atoms associated with a rotation of every other tetrahedral-chain unit from the O- to S-type position similar to the postorthopyroxene-type MgSiO3. As a consequence of the oxygen displacement, the coordination number of Li atoms is changing from [5 + 1] to a proper 6-fold coordination. The transition around Pc = 9.0 ± 0.1 GPa is associated with a volume discontinuity of ΔV = -1.6%. This orthopyroxene (OEn-Pbca) to postorthopyroxene (pOEn-P21/c) transition is the second example of this type of transformation. Precise lattice parameters have been determined during isothermal compression. The fit of the unit-cell volumes of ß-LiScGe2O6, using a third-order Birch-Murnaghan equation of state, yields V0 = 943.63 ± 0.11 Å3, K0 = 89.8 ± 0.6 GPa, and dK/dP = 4.75 ± 0.18 as parameters. Evaluation of the data points beyond the critical transition pressure using a second-order Birch-Murnaghan equation suggests V0 = 940.6 ± 4.4 Å3 and K0 = 82.4 ± 4.8 GPa. A series of high-pressure Raman spectra confirm the symmetry-related structural transition, with band positions shifting in a noncontinuous manner, thus confirming the proposed first-order transition.

4.
Inorg Chem ; 59(9): 6255-6266, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32293173

RESUMO

Single crystals of synthetic nickel sulfate monohydrate, α-NiSO4·H2O (space-group symmetry C2/c at ambient conditions), were subject to high-pressure behavior investigations in a diamond-anvil cell up to 10.8 GPa. By means of subtle spectral changes in Raman spectra recorded at 298 K on isothermal compression, two discontinuities were identified at 2.47(1) and 6.5(5) GPa. Both transitions turn out to be apparently second order in character, as deduced from the continuous evolution of unit-cell volumes determined from single-crystal X-ray diffraction. The first structural transition from α- to ß-NiSO4·H2O is an obvious ferroelastic C2/c-P1̅ transition. It is purely displacive from a structural point of view, accompanied by symmetry changes in the hydrogen-bonding scheme. The second ß- to γ-NiSO4·H2O transition, further splitting the O2 (hydrogen bridge acceptor) position and violating the P1̅ space-group symmetry, is also evident from the splitting of individual bands in the Raman spectra. It can be attributed to symmetry reduction through local violation of local centrosymmetry. Lattice elasticities were obtained by fitting second-order Birch-Murnaghan equations of state to the p-V data points yielding the following zero-pressure bulk moduli values: K0 = 63.4 ± 1.0 GPa for α-NiSO4·H2O, K0 = 61.3 ± 1.9 GPa for ß-NiSO4·H2O, and K0 = 68.8 ± 2.5 GPa for γ-NiSO4·H2O.

5.
Nat Commun ; 9(1): 3148, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089845

RESUMO

Carbon dioxide is a widespread simple molecule in the Universe. In spite of its simplicity it has a very complex phase diagram, forming both amorphous and crystalline extended phases above 40 GPa. The stability range and nature of these phases are still debated, especially in view of their possible role within the deep carbon cycle. Here, we report static synchrotron X-ray diffraction and Raman high-pressure experiments in the megabar range providing evidence for the stability of the polymeric phase V at pressure-temperature conditions relevant to the Earth's lowermost mantle. The equation of state has been extended to 120 GPa and, contrary to earlier experimental findings, neither dissociation into diamond and ε-oxygen nor ionization was observed. Severe deviatoric stress and lattice deformation along with preferred orientation are removed on progressive annealing, thus suggesting CO2-V as the stable structure also above one megabar.

6.
Geostand Geoanal Res ; 42(4): 431-457, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30686958

RESUMO

Here, we document a detailed characterisation of two zircon gemstones, GZ7 and GZ8. Both stones had the same mass at 19.2 carats (3.84 g) each; both came from placer deposits in the Ratnapura district, Sri Lanka. The U-Pb data are in both cases concordant within the uncertainties of decay constants and yield weighted mean 206Pb/238U ages (95% confidence uncertainty) of 530.26 Ma ± 0.05 Ma (GZ7) and 543.92 Ma ± 0.06 Ma (GZ8). Neither GZ7 nor GZ8 have been subjected to any gem enhancement by heating. Structure-related parameters correspond well with the calculated alpha doses of 1.48 × 1018 g-1 (GZ7) and 2.53 × 1018 g-1 (GZ8), respectively, and the (U-Th)/He ages of 438 Ma ± 3 Ma (2s) for GZ7 and 426 Ma ± 9 Ma (2s) for GZ8 are typical of unheated zircon from Sri Lanka. The mean U mass fractions are 680 µg g-1 (GZ7) and 1305 µg g-1 (GZ8). The two zircon samples are proposed as reference materials for SIMS (secondary ion mass spectrometry) U-Pb geochronology. In addition, GZ7 (Ti mass fractions 25.08 µg g-1 ± 0.18 µg g-1; 95% confidence uncertainty) may prove useful as reference material for Ti-in-zircon temperature estimates.

7.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 5): 827-835, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28980986

RESUMO

The crystal structure of the synthetic double carbonate norsethite [BaMg(CO3)2] has been reinvestigated using X-ray diffraction data within the temperature range 100-500 K using a high-sensitivity PILATUS pixel detector. The previously assumed positional shift of the crystallographically unique oxygen atom is confirmed. The shift is associated with a coupled rotation of symmetry-equivalent carbonate groups. It was possible to follow the shift using high-accuracy experiments under varying temperature conditions between 100 K and the critical transition temperature occurring at Tc = 363 ±â€…3 K. The transition of the α-form (space group R{\bar 3}c; below Tc), which represents a superstructure of the ß-form (space group R{\bar 3}m, with c' = c/2; above Tc) was studied in detail. The tricritical order character of this displacive phase transition was verified by tracking the intensities of the recorded superstructure reflections (l = 2n + 1) from single-crystal diffraction and using high-precision lattice parameters obtained from powder diffraction in transmission geometry. Thermodynamic properties suggest both rotation of the CO3 group and a coordination change of the BaO12 coordination polyhedra as the order parameters driving the temperature-dependent α-ß phase transition. Nevertheless, a detailed structural analysis reveals the coordination change of the barium atoms to be the main driving force for the observed transformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...