Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 254: 119057, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35354095

RESUMO

Fundamental to elucidating the functional organization of the brain is the assessment of causal interactions between different brain regions. Multivariate autoregressive (MVAR) modeling techniques applied to multisite electrophysiological recordings are a promising avenue for identifying such causal links. They estimate the degree to which past activity in one or more brain regions is predictive of another region's present activity, while simultaneously accounting for the mediating effects of other regions. Including as many mediating variables as possible in the model has the benefit of drastically reducing the odds of detecting spurious causal connectivity. However, effective bounds on the number of MVAR model coefficients that can be estimated reliably from limited data make exploiting the potential of MVAR models challenging for even modest numbers of recording sites. Here, we utilize well-established dimensionality-reduction techniques to fit MVAR models to human intracranial data from ∼100 - 200 recording sites spanning dozens of anatomically and functionally distinct cortical regions. First, we show that high-dimensional MVAR models can be successfully estimated from long segments of data and yield plausible connectivity profiles. Next, we use these models to generate synthetic data with known ground-truth connectivity to explore the utility of applying principal component analysis and group least absolute shrinkage and selection operator (gLASSO) to reduce the number of parameters (connections) during model fitting to shorter data segments. We show that gLASSO is highly effective for recovering ground-truth connectivity in the limited data regime, capturing important features of connectivity for high-dimensional models with as little as 10 seconds of data. The methods presented here have broad applicability to the analysis of high-dimensional time series data in neuroscience, facilitating the elucidation of the neural basis of sensation, cognition, and arousal.


Assuntos
Mapeamento Encefálico , Eletroencefalografia , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Humanos , Vias Neurais/fisiologia
2.
Neuroimage ; 211: 116627, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32045640

RESUMO

Disruption of cortical connectivity likely contributes to loss of consciousness (LOC) during both sleep and general anesthesia, but the degree of overlap in the underlying mechanisms is unclear. Both sleep and anesthesia comprise states of varying levels of arousal and consciousness, including states of largely maintained conscious experience (sleep: N1, REM; anesthesia: sedated but responsive) as well as states of substantially reduced conscious experience (sleep: N2/N3; anesthesia: unresponsive). Here, we tested the hypotheses that (1) cortical connectivity will exhibit clear changes when transitioning into states of reduced consciousness, and (2) these changes will be similar for arousal states of comparable levels of consciousness during sleep and anesthesia. Using intracranial recordings from five adult neurosurgical patients, we compared resting state cortical functional connectivity (as measured by weighted phase lag index, wPLI) in the same subjects across arousal states during natural sleep [wake (WS), N1, N2, N3, REM] and propofol anesthesia [pre-drug wake (WA), sedated/responsive (S), and unresponsive (U)]. Analysis of alpha-band connectivity indicated a transition boundary distinguishing states of maintained and reduced conscious experience in both sleep and anesthesia. In wake states WS and WA, alpha-band wPLI within the temporal lobe was dominant. This pattern was largely unchanged in N1, REM, and S. Transitions into states of reduced consciousness N2, N3, and U were characterized by dramatic changes in connectivity, with dominant connections shifting to prefrontal cortex. Secondary analyses indicated similarities in reorganization of cortical connectivity in sleep and anesthesia. Shifts from temporal to frontal cortical connectivity may reflect impaired sensory processing in states of reduced consciousness. The data indicate that functional connectivity can serve as a biomarker of arousal state and suggest common mechanisms of LOC in sleep and anesthesia.


Assuntos
Ritmo alfa/fisiologia , Córtex Cerebral/fisiologia , Conectoma , Eletrocorticografia , Rede Nervosa/fisiologia , Fases do Sono/fisiologia , Inconsciência/fisiopatologia , Adulto , Anestesia , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Hipnóticos e Sedativos/farmacologia , Masculino , Rede Nervosa/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Propofol/farmacologia , Inconsciência/induzido quimicamente , Inconsciência/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...