Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 107(11): 3370-3377, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37163310

RESUMO

Diplodia sapinea is a globally distributed opportunistic fungal pathogen of conifers that causes severe production losses in forestry. The fungus frequently colonizes pine trees as an endophyte without causing visible symptoms but can become pathogenic when the host plant is weakened by stress, such as drought or heat. Forest damage might therefore further increase due to the effects of climate change. The future development of control strategies depends on a better understanding of the fungus' biology, which requires experimental methods for its investigation in the laboratory. An efficient, standardized protocol for the production and storage of highly viable pycnidiospores was developed, and a spore-based infection method was devised. We compared infection rates of dormant and actively growing, wounded, or nonwounded Scots pine seedlings inoculated with in vitro-produced spores and mycelium from agar-plugs. Spores were a much more efficient inoculum for causing disease symptoms on wounded plants than the conventional agar plug. The application of spores on nonwounded plants lead to high rates of asymptomatic infection, suggesting endophytic fungal development. These methods enable standardized spore infection and virulence assays and promote D. sapinea as a model organism for studying the switch from endophytic to pathogenic life styles of forest pathogens.


Assuntos
Pinus , Doenças das Plantas , Ágar , Doenças das Plantas/microbiologia , Pinus/microbiologia , Esporos
2.
Mol Plant Pathol ; 23(11): 1620-1639, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35957598

RESUMO

Lecanosticta acicola is a pine needle pathogen causing brown spot needle blight that results in premature needle shedding with considerable damage described in North America, Europe, and Asia. Microsatellite and mating type markers were used to study the population genetics, migration history, and reproduction mode of the pathogen, based on a collection of 650 isolates from 27 countries and 26 hosts across the range of L. acicola. The presence of L. acicola in Georgia was confirmed in this study. Migration analyses indicate there have been several introduction events from North America into Europe. However, some of the source populations still appear to remain unknown. The populations in Croatia and western Asia appear to originate from genetically similar populations in North America. Intercontinental movement of the pathogen was reflected in an identical haplotype occurring on two continents, in North America (Canada) and Europe (Germany). Several shared haplotypes between European populations further suggests more local pathogen movement between countries. Moreover, migration analyses indicate that the populations in northern Europe originate from more established populations in central Europe. Overall, the highest genetic diversity was observed in south-eastern USA. In Europe, the highest diversity was observed in France, where the presence of both known pathogen lineages was recorded. Less than half of the observed populations contained mating types in equal proportions. Although there is evidence of some sexual reproduction taking place, the pathogen spreads predominantly asexually and through anthropogenic activity.


Assuntos
Ascomicetos , Pinus , Ascomicetos/genética , Europa (Continente) , Variação Genética , Genética Populacional , Repetições de Microssatélites/genética , Pinus/genética
3.
Sci Data ; 8(1): 210, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362931

RESUMO

For non-native tree species with an origin outside of Europe a detailed compilation of enemy species including the severity of their attack is lacking up to now. We collected information on native and non-native species attacking non-native trees, i.e. type, extent and time of first observation of damage for 23 important non-native trees in 27 European countries. Our database includes about 2300 synthesised attack records (synthesised per biotic threat, tree and country) from over 800 species. Insects (49%) and fungi (45%) are the main observed biotic threats, but also arachnids, bacteria including phytoplasmas, mammals, nematodes, plants and viruses have been recorded. This information will be valuable to identify patterns and drivers of attacks, and trees with a lower current health risk to be considered for planting. In addition, our database will provide a baseline to which future impacts on non-native tree species could be compared with and thus will allow to analyse temporal trends of impacts.


Assuntos
Espécies Introduzidas , Árvores , Animais , Conservação dos Recursos Naturais , Europa (Continente) , Fungos , Insetos , Nematoides , Doenças das Plantas
4.
Sci Rep ; 8(1): 17448, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487524

RESUMO

Natural and urban forests worldwide are increasingly threatened by global change resulting from human-mediated factors, including invasions by lethal exotic pathogens. Ash dieback (ADB), incited by the alien invasive fungus Hymenoscyphus fraxineus, has caused large-scale population decline of European ash (Fraxinus excelsior) across Europe, and is threatening to functionally extirpate this tree species. Genetically controlled host resistance is a key element to ensure European ash survival and to restore this keystone species where it has been decimated. We know that a low proportion of the natural population of European ash expresses heritable, quantitative resistance that is stable across environments. To exploit this resource for breeding and restoration efforts, tools that allow for effective and efficient, rapid identification and deployment of superior genotypes are now sorely needed. Here we show that Fourier-transform infrared (FT-IR) spectroscopy of phenolic extracts from uninfected bark tissue, coupled with a model based on soft independent modelling of class analogy (SIMCA), can robustly discriminate between ADB-resistant and susceptible European ash. The model was validated with populations of European ash grown across six European countries. Our work demonstrates that this approach can efficiently advance the effort to save such fundamental forest resource in Europe and elsewhere.


Assuntos
Epidemias , Fenótipo , Doenças das Plantas/microbiologia , Análise Espectral , Suscetibilidade a Doenças , Europa (Continente) , Fraxinus/genética , Fraxinus/microbiologia , Geografia , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...