Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 49(1): 68-77, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-19929007

RESUMO

The physical properties of substrates are known to control cell adhesion via integrin-mediated signaling. Fibrin and fibrinogen, the principal components of hemostatic and pathological thrombi, may represent biologically relevant substrates whose variable physical properties control adhesion of leukocytes and platelets. In our previous work, we have shown that binding of fibrinogen to the surface of fibrin clot prevents cell adhesion by creating an antiadhesive fibrinogen layer. Furthermore, fibrinogen immobilized on various surfaces at high density supports weak cell adhesion whereas at low density it is highly adhesive. To explore the mechanism underlying differential cell adhesion, we examined the structural and physical properties of surfaces prepared by deposition of various concentrations of fibrinogen using atomic force microscopy and force spectroscopy. Fibrinogen deposition at high density resulted in an aggregated multilayered material characterized by low adhesion forces. In contrast, immobilization of fibrinogen at low density produced a single layer in which molecules were directly attached to the solid surface, resulting in higher adhesion forces. Consistent with their distinct physical properties, low- but not high-density fibrinogen induced strong alpha(IIb)beta(3)-mediated outside-in signaling in platelets, resulting in their spreading. Moreover, while intact fibrin gels induced strong signaling in platelets, deposition of fibrinogen on the surface of fibrin resulted in diminished cell signaling. The data suggest that deposition of a multilayered fibrinogen matrix prevents stable cell adhesion by modifying the physical properties of surfaces, which results in reduced force generation and insufficient signaling. The mechanism whereby circulating fibrinogen alters adhesive properties of fibrin clots may have important implications for control of thrombus formation and thrombogenicity of biomaterials.


Assuntos
Fibrina/química , Fibrinogênio/química , Adesividade Plaquetária/fisiologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Transdução de Sinais , Sítios de Ligação , Plaquetas/metabolismo , Plaquetas/ultraestrutura , Adesão Celular , Citoplasma , Fibrina/metabolismo , Fibrinogênio/metabolismo , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Propriedades de Superfície
2.
J Biomed Opt ; 13(5): 054021, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19021401

RESUMO

Surface plasmon-coupled emission (SPCE) is a phenomenon whereby the light emitted from a fluorescent molecule can couple into the surface plasmon of an adjacent metal layer, resulting in highly directional emission in the region of the surface plasmon resonance (SPR) angle. In addition to high directionality of emission, SPCE has the added advantage of surface selectivity in that the coupling diminishes with increasing distance from the surface. This effect can be exploited in bioassays whereby a fluorescing background from the sample can be suppressed. We have investigated, both theoretically and experimentally, the SPCE effect for a Cy5-spacer-Ag layer system. Both the angular dependence of emission and the dependence of SPCE emission intensity on Cy5-metal separation were investigated. It is demonstrated that SPCE leads to lower total fluorescence signal than that obtained in the absence of a metal layer. This is the first experimental verification of the reduction in SPCE intensity compared to the metal-free case. Our results are in a good agreement with theoretical models. The validation of the theoretical model provides a basis for optimizing biosensor platform performance, particularly in the context of the advantages offered by SPCE of highly directional emission and surface selectivity.


Assuntos
Algoritmos , Corantes Fluorescentes/análise , Modelos Químicos , Prata/análise , Espectrometria de Fluorescência/métodos , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Opt Express ; 16(6): 4322-9, 2008 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-18542529

RESUMO

We present a novel calibration technique for determining the shear distance of a Nomarski Differential Interference Contrast prism, which is used in Differential Interference Contrast microscopy as well as for the recently developed dual-focus fluorescence correlation spectroscopy. In both applications, an exact knowledge of the shear distance induced by the Nomarski prism is important for a quantitative data evaluation. In Differential Interference Contrast microscopy, the shear distance determines the spatial resolution of imaging, in dual-focus fluorescence correlation spectroscopy, it represents the extrinsic length scale for determining diffusion coefficients. The presented calibration technique is itself based on a combination of fluorescence correlation spectroscopy and dynamic light scattering. The method is easy to implement and allows for determining the shear distance with nanometer accuracy.


Assuntos
Algoritmos , Microscopia de Contraste de Fase/instrumentação , Microscopia de Contraste de Fase/normas , Espectrometria de Fluorescência/instrumentação , Espectrometria de Fluorescência/normas , Calibragem
4.
Biophys J ; 94(3): L17-9, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17965130

RESUMO

The spermine-induced DNA condensation is a first-order phase transition. Here, we apply a novel technique fluorescence lifetime correlation spectroscopy to analyze this transition in a greater detail. We show that the method allows for the observation of the condensed and uncondensed molecules simultaneously based solely on different fluorescence lifetimes of the intercalating fluorophore PicoGreen in the folded und unfolded domains of DNA. The auto- and cross-correlation functions reveal that a small fraction of the DNA molecules is involved in the dynamic intramolecular equilibrium. Careful inspection of the cross-correlation curves suggests that folding occurs gradually within milliseconds.


Assuntos
Modelos Químicos , Modelos Moleculares , Plasmídeos/química , Plasmídeos/ultraestrutura , Espermina/química , Simulação por Computador , Movimento (Física) , Conformação de Ácido Nucleico
5.
Appl Phys Lett ; 90(25): 251116, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-19696913

RESUMO

Surface plasmon-coupled emission (SPCE) is a phenomenon in which fluorophores in the excited state couple with metallic structures resulting in surface plasmons that radiate into the substrate. The authors examined the dependence of SPCE on the distance and orientation of a fluorophore in the nanometric range of the Ag surface. The distance of the fluorophore from the Ag surface was controlled from 2 to 52 nm using Langmuir-Blodgett films. For a horizontally oriented cyanine dye, the experimental intensity and lifetime measurements are in excellent agreement with the detailed theoretical analysis of SPCE.

6.
Langmuir ; 22(23): 9580-5, 2006 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-17073482

RESUMO

A new concept based on fluorescence lifetime correlation spectroscopy (FLCS) is presented allowing the simultaneous determination of diffusion coefficients of identical molecules located in different environments. The difference in fluorescence lifetimes, which is the main prerequisite for FLCS, is reached by locating one population of the dye close to a light-absorbing surface. Since such surfaces quench fluorescence, the fluorescence lifetime of chromophores located close to these surfaces can be tuned in a specific manner. This approach has been demonstrated for a BODIPY-tail-labeled lipid in supported phospholipid bilayers (SPBs) as well as in phospholipid multilayers adsorbed onto solid supports. In particular, the effect of the solid support type on the fluorescence lifetime as well as its dependence on the BODIPY-support distance has been characterized and verified by theoretical considerations based on precise determination of refractive indices of the used supports. While the fluorescence lifetime of BODIPY dye is 5.6 ns in small unilamellar vesicles (SUVs) composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-[phospho-L-serine] (DOPS), the lifetime is 1.8 ns in DOPC/DOPS SPBs adsorbed onto ITO-covered glass or 3.0 ns in a DOPC/DOPS monolayer adsorbed onto seven 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA) layers on oxidized silicon. Using these particular systems, we demonstrated that FLCS enables one to characterize simultaneously two-dimensional lipid diffusion in the planar lipid layers and three-dimensional vesicle diffusion in bulk above the lipid layers using single dye labeling. The autocorrelation functions obtained by this new approach do agree with those obtained by standard FCS on isolated SPBs or vesicles. Possible applications of this virtual two-channel measurement using single dye labeling as well as one detection channel are discussed.


Assuntos
Bicamadas Lipídicas/química , Fosfolipídeos/química , Espectrometria de Fluorescência/instrumentação , Espectrometria de Fluorescência/métodos , Propriedades de Superfície , Fatores de Tempo
7.
Proc Natl Acad Sci U S A ; 103(17): 6495-9, 2006 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-16614073

RESUMO

The centroid of a fluorophore can be determined within approximately 1.5-nm accuracy from its focused image through fluorescence imaging with one-nanometer accuracy (FIONA). If, instead, the sample is moved away from the focus, the point-spread-function depends on both the position and 3D orientation of the fluorophore, which can be calculated by defocused orientation and position imaging (DOPI). DOPI does not always yield position accurately, but it is possible to switch back and forth between focused and defocused imaging, thereby getting the centroid and the orientation with precision. We have measured the 3D orientation and stepping behavior of single bifunctional rhodamine probes attached to one of the calmodulins of the light-chain domain (LCD) of myosin V as myosin V moves along actin. Concomitant with large and small steps, the LCD rotates and then dwells in the leading and trailing position, respectively. The probe angle relative to the barbed end of the actin (beta) averaged 128 degrees while the LCD was in the leading state and 57 degrees in the trailing state. The angular difference of 71 degrees represents rotation of LCD around the bound motor domain and is consistent with a 37-nm forward step size of myosin V. When beta changes, the probe rotates +/-27 degrees azimuthally around actin and then rotates back again on the next step. Our results remove degeneracy in angles and the appearance of nontilting lever arms that were reported.


Assuntos
Miosina Tipo V/química , Miosina Tipo V/metabolismo , Animais , Fenômenos Biofísicos , Biofísica , Calmodulina/química , Calmodulina/metabolismo , Galinhas , Corantes Fluorescentes , Técnicas In Vitro , Modelos Moleculares , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Pontos Quânticos , Rodaminas
8.
Opt Express ; 14(18): 8111-20, 2006 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19529183

RESUMO

The technique of determining the position of individual fluorescent molecules with nanometer resolution, called FIONA, has become an important tool for several biophysical applications such as studying motility mechanisms of motor proteins. The position determination is usually done by fitting a 2-D Gaussian (x-y vs. photon number) to the emission intensity distribution of the fluorescent molecule. However, the intensity distribution of an emitting molecule depends not only on its position in space, but also on its three-dimensional orientation. Here, we present an extensive numeri-cal study of the achievable accuracy of position determination as a function of molecule orientation. We compare objectives with different numerical apertures and show that an effective pixel size of 100 nm or less per CCD pixel is required to obtain good positional accuracy. Nonetheless, orienta-tion effects can still cause position errors for large anisotropy, as high as 10 nm for high numerical aperture objectives. However, position accuracy is significantly better (< 2.5 nm) when using objectives with a numerical aper-ture of 1.2. Of course, probes with lower anisotropy decrease the positional uncertainty.

9.
J Fluoresc ; 15(3): 207-14, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15986147

RESUMO

We describe two new fluorescence resonance energy transfer (FRET) compatible labels, their covalent linkage to oligonucleotides, and their use as donor and acceptor, respectively, in FRET hybridization studies. The dyes belong to the cyanine dyes, and water solubility is imparted by a phosphonate which represents a new solubilizing group in DNA labels. They were linked to amino-modified synthetic oligonucleotides via oxysuccinimide (OSI) esters. The studies performed include binding assays, determinations of molecular distances, homogeneous competitive assays, and limits of detection, which are in the order of 5 pmol/L for a 15-mer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...