Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Environ Sci Process Impacts ; 24(12): 2263-2271, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36281820

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are persistent, bioaccumulative chemicals that can be toxic at very low levels. Many of these compounds have unusual chemical properties that can have a large impact on analytical methods intended to quantitate them. When analyzing environmental samples, concentrating extraction eluents can greatly increase the sensitivity of PFAS extraction and analysis workflows. However, data on PFAS stability when evaporated under vacuum drying conditions are lacking. In this study two common sample preparation methods were replicated (methanol or methanolic ammonium hydroxide) to determine if PFAS material would undergo any observable loss during vacuum evaporation. Standards containing 49 different analytes from 7 different PFAS classes were evaporated to dryness under vacuum either with or without heat and reconstituted using one of two methods. It was found that recovery of some classes (e.g. PFSA, PFESA, FTS) was not greatly impacted by evaporation conditions or reconstitution method. Some analytes such as the very long chain PFCAs were not affected by evaporation conditions but saw drastic differences in recovery depending on the reconstitution method. Others analytes, for example PFSAms, experienced significant loss during evaporation that could not be mitigated by the chosen reconstitution method. This difference could be due to the number of fluorines present on the compound which correlated with a compound's hydrophobicity. Due to these findings, it is recommend that researchers consider PFAS class, chain length, and fluorine number when designing concentration and reconstitution protocols for PFAS to ensure conditions are optimal for the specific analytes of interest.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Solventes , Bioacumulação , Flúor , Poluentes Químicos da Água/análise
4.
Rapid Commun Mass Spectrom ; 36(11): e9295, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35275435

RESUMO

RATIONALE: The ability to perform absolute quantitation and non-targeted analysis on a single mass spectrometry instrument would be advantageous to many researchers studying per- and polyfluoroalkyl substances (PFAS). High-resolution accurate mass (HRAM) instrumentation (typically deployed for non-targeted work) carries several advantages over traditional triple quadrupole workflows when performing absolute quantitation. Processing this data using a vendor-neutral software would promote collaboration for these environmental studies. METHODS: LC-MS (Orbitrap Exploris 240) was used for absolute quantitation of 45 PFAS using precursor (MS1) peak areas for quantitation, whereas isotope pattern matching and fragmentation (MS2) pattern matching were used for qualitative identification. In addition, a fluorinated chromatographic column achieved superior separation compared to the typical C18 columns typically used in PFAS analyses. This method was validated across eight different chemical classes using recommended guidelines found in EPA Method 537.1 and Skyline data processing software. RESULTS: The validated limits of all 45 compounds, as well as metrics or accuracy and reproducibility, are reported. Most compounds achieved limits of quantitation in the range of 2-50 ng/L. Four newly released Chemours-specific compounds (PEPA, PFO3OA, PFO4DA, and PFO5DoA) were also validated. Aspects of data analysis specific to high resolving power absolute quantitation are reviewed as are the details of processing these data via Skyline. CONCLUSIONS: This method shows the feasibility of performing reproducible absolute quantitation of PFAS on an HRAM platform and does so using an open-source vendor-neutral data processing software to facilitate sharing of data across labs and institutions.


Assuntos
Fluorocarbonos , Cromatografia Líquida , Espectrometria de Massas/métodos , Reprodutibilidade dos Testes , Software
5.
Anal Bioanal Chem ; 414(3): 1227-1234, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34291300

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are used extensively in commercial products. Their unusual solubility properties make them an ideal class of compounds for various applications. However, these same properties have led to significant contamination and bioaccumulation given their persistence in the environment. Development of analytical techniques to detect and quantify these compounds must take into account the potential for these properties to perturb these measurements, specifically the potential to bias the electrospray ionization (ESI) process. Direct injection ESI analysis of 23 different PFAS species revealed that hydrophobicity and PFAS class can predict the ESI overall response factors. In this study, a method for predicting the behavior of individual PFAS compounds, including relative retention order in chromatography, is presented which is simply based on the number of fluorine atoms in the molecule as well as the class of the compound (e.g., perfluroalkylcarboxylic acids) vs. computational estimations (e.g., non-polar surface area and logP).

6.
Biomed Mater ; 17(1)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34731852

RESUMO

Extracellular matrix (ECM) is a complex structure composed of bioactive molecules representative of the local tissue microenvironment. Decellularized ECM biomaterials harness these biomolecules for regenerative medicine applications. One potential therapeutic application is the use of vocal fold (VF) specific ECM to restore the VFs after injury. ECM scaffolds are derived through a process of decellularization, which aims to remove unwanted immunogenic biomolecules (e.g. DNA) while preserving the composition of the ECM. The effectiveness of the decellularization is typically assessed at the end by quantifying ECM attributes such as final dsDNA content. However, batch-to-batch variability in ECM manufacturing remains a significant challenge for the standardization, cost-effectiveness, and scale-up process. The limited number of tools available for in-process control heavily restricts the uncovering of the correlations between decellularization process parameters and ECM attributes. In this study, we developed a technique applicable to both the classical batch method and semi-continuous decellularization systems to trace the decellularization of two laryngeal tissues in real-time. We hypothesize that monitoring the bioreactor's effluent absorbance at 260 nm as a function of time will provide a representative DNA release profile from the tissue and thus allow for process optimization. The DNA release profiles were obtained for laryngeal tissues and were successfully used to optimize the derivation of VF lamina propria-ECM (auVF-ECM) hydrogels. This hydrogel had comparable rheological properties to commonly used biomaterials to treat VF injuries. Also, the auVF-ECM hydrogel promoted the down-regulation of CCR7 by THP-1 macrophages upon lipopolysaccharide stimulationin vitrosuggesting some anti-inflammatory properties. The results show that absorbance profiles are a good representation of DNA removal during the decellularization process thus providing an important tool to optimize future protocols.


Assuntos
Materiais Biocompatíveis , Matriz Extracelular , Matriz Extracelular/química , Hidrogéis , Medicina Regenerativa , Análise Espectral , Engenharia Tecidual/métodos , Alicerces Teciduais
7.
Oncotarget ; 12(19): 1886-1902, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34548906

RESUMO

Glucuronidation controls androgen levels in the prostate and the dysregulation of enzymes in this pathway is associated with castration resistant prostate cancer. UDP-glucose dehydrogenase (UGDH) produces UDP-glucuronate, the essential precursor for glucuronidation, and its expression is elevated in prostate cancer. We compared protein and metabolite levels relevant to the glucuronidation pathway in five prostate cancer patient-derived xenograft models paired with their isogenic counterparts that were selected in vivo for castration resistant (CR) recurrence. All pairs showed changes in UGDH and associated enzymes and metabolites that were consistent with those we found in an isogenic androgen dependent (AD) and CR LNCaP prostate cancer model. Ectopic overexpression of UGDH in LNCaP AD cells blunted androgen-dependent gene expression, increased proteoglycan synthesis, significantly increased cell growth compared to controls, and eliminated dose responsive growth suppression with enzalutamide treatment. In contrast, the knockdown of UGDH diminished proteoglycans, suppressed androgen dependent growth irrespective of androgens, and restored androgen sensitivity in CR cells. Importantly, the knockdown of UGDH in both LNCaP AD and CR cells dramatically sensitized these cells to enzalutamide. These results support a role for UGDH in androgen responsiveness and a target for therapeutic strategies in advanced prostate cancer.

8.
Bioorg Med Chem Lett ; 32: 127723, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33249135

RESUMO

Ribose 5-phosphate isomerase type B (RPI-B) is a key enzyme of the pentose phosphate pathway that catalyzes the isomerization of ribose 5-phosphate (R5P) and ribulose 5-phosphate (Ru5P). Trypanosoma cruzi RPI-B (TcRPI-B) appears to be a suitable drug-target mainly due to: (i) its essentiality (as previously shown in other trypanosomatids), (ii) it does not present a homologue in mammalian genomes sequenced thus far, and (iii) it participates in the production of NADPH and nucleotide/nucleic acid synthesis that are critical for parasite cell survival. In this survey, we report on the competitive inhibition of TcRPI-B by a substrate - analogue inhibitor, Compound B (Ki = 5.5 ± 0.1 µM), by the Dixon method. This compound has an iodoacetamide moiety that is susceptible to nucleophilic attack, particularly by the cysteine thiol group. Compound B was conceived to specifically target Cys-69, an important active site residue. By incubating TcRPI-B with Compound B, a trypsin digestion LC-MS/MS analysis revealed the identification of Compound B covalently bound to Cys-69. This inhibitor also exhibited notable in vitro trypanocidal activity against T. cruzi infective life-stages co-cultured in NIH-3T3 murine host cells (IC50 = 17.40 ± 1.055 µM). The study of Compound B served as a proof-of-concept so that next generation inhibitors can potentially be developed with a focus on using a prodrug group in replacement of the iodoacetamide moiety, thus representing an attractive starting point for the future treatment of Chagas' disease.


Assuntos
Aldose-Cetose Isomerases/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/química , Proteínas de Protozoários/antagonistas & inibidores , Tripanossomicidas/síntese química , Trypanosoma cruzi/enzimologia , Células 3T3 , Aldose-Cetose Isomerases/metabolismo , Animais , Sítios de Ligação , Domínio Catalítico , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Cinética , Camundongos , Simulação de Dinâmica Molecular , Proteínas de Protozoários/metabolismo , Especificidade por Substrato , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos
9.
ACS Biomater Sci Eng ; 6(3): 1690-1703, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33455360

RESUMO

The vocal fold lamina propria (VFLP), one of the outermost layers of the vocal fold (VF), is composed of tissue-specific extracellular matrix (ECM) proteins and is highly susceptible to injury. Various biomaterials have been clinically tested to treat voice disorders (e.g., hydrogels, fat, and hyaluronic acid), but satisfactory recovery of the VF functionality remains elusive. Fibrosis or scar formation in the VF is a major challenge, and the development and refinement of novel therapeutics that promote the healing and normal function of the VF are needed. Injectable hydrogels derived from native tissues have been previously reported with major advantages over synthetic hydrogels, including constructive tissue remodeling and reduced scar tissue formation. This study aims to characterize the composition of a decellularized porcine VFLP-ECM scaffold and the cytocompatibility and potential antifibrotic properties of a hydrogel derived from VFLP-ECM. In addition, we isolated potential matrix-bound vesicles (MBVs) and macromolecules from the VFLP-ECM that also downregulated smooth muscle actin ACTA2 under transforming growth factor-beta 1 (TGF-ß1) stimulation. The results provide evidence of the unique protein composition of the VFLP-ECM and the potential link between the components of the VFLP-ECM and the inhibition of TGF-ß1 signaling observed in vitro when transformed into injectable forms.


Assuntos
Materiais Biocompatíveis , Prega Vocal , Animais , Materiais Biocompatíveis/farmacologia , Fibroblastos , Mucosa , Suínos , Fator de Crescimento Transformador beta1
10.
ACS Biomater Sci Eng ; 6(7): 4200-4213, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33463339

RESUMO

Decellularized extracellular matrix (ECM) scaffolds derived from tissues and organs are complex biomaterials used in clinical and research applications. A number of decellularization protocols have been described for ECM biomaterials derivation, each adapted to a particular tissue and use, restricting comparisons among materials. One of the major sources of variability in ECM products comes from the tissue source and animal age. Although this variability could be minimized using established tissue sources, other sources arise from the decellularization process itself. Overall, current protocols require manual work and are poorly standardized with regard to the choice of reagents, the order by which they are added, and exposure times. The combination of these factors adds variability affecting the uniformity of the final product between batches. Furthermore, each protocol needs to be optimized for each tissue and tissue source making tissue-to-tissue comparisons difficult. Automation and standardization of ECM scaffold development constitute a significant improvement to current biomanufacturing techniques but remains poorly explored. This study aimed to develop a biofabrication method for fast and automated derivation of raw material for ECM hydrogel production while preserving ECM composition and controlling lot-to-lot variability. The main result was a closed semibatch bioreactor system with automated dosing of decellularization reagents capable of deriving ECM material from pretreated soft tissues. The ECM was further processed into hydrogels to demonstrate gelation and cytocompatibility. This work presents a versatile, scalable, and automated platform for the rapid production of ECM scaffolds.


Assuntos
Matriz Extracelular , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Reatores Biológicos , Hidrogéis , Suínos
11.
J Anal Toxicol ; 44(4): 331-338, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-31776574

RESUMO

Adherence to prescribed antipsychotics is an ongoing problem. Traditionally, estimates of adherence have been made from patient interviews, pill counting and blood testing. A number of methods for the analysis of antipsychotics in blood have been reported for both therapeutic drug monitoring and postmortem testing for toxicity. This report details a dilute and shoot method for the analysis of 19 different antipsychotics and metabolites. The method takes advantage of earlier reports demonstrating unique, prevalent urine metabolites for aripiprazole, brexpiprazole, haloperidol and lurasidone to enhance sensitivity for these analytes. With a fast analysis time and minimal sample preparation, this method can be used for quantitation of antipsychotics in urine. Finally, this method has been used to test samples for over a year with the results summarized in this report. While further improvements are certainly possible, this method is selective and sensitive for this group of important compounds.


Assuntos
Antipsicóticos/urina , Aripiprazol , Cromatografia Líquida , Monitoramento de Medicamentos , Humanos , Limite de Detecção , Quinolonas , Espectrometria de Massas em Tandem , Tiofenos
12.
Data Brief ; 26: 104464, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31667234

RESUMO

This data article is related to the research article entitled "Silver nanoparticles alter epithelial basement membrane integrity, cell adhesion molecule expression and TGF-beta secretion", available in the journal Nanomedicine: Nanotechnology, Biology, and Medicine [1]. This Data in Brief consists of data that describe changes in the expression of basement membrane (BM)-associated genes and proteins in three non-transformed epithelial cell lines following acute (6 h) and chronic (24 h plus 7-day chase) exposure to silver nanoparticles (AgNPs). Human BEAS2B (lung), MCF10AI (breast), and CCD-18Co (colon) cultured epithelia were analyzed for protein expression by LC-MS/MS and for gene expression by pathway-focused QRT-PCR arrays of 168 focal adhesion, integrin, and extracellular matrix (ECM) genes known to be localized to the plasma membrane, the BM/ECM, or secreted into the extracellular space. Ingenuity pathway analysis (IPA) of combined gene and protein expression datasets was then used to predict canonical pathways affected by AgNP exposure.

13.
Nanomedicine ; 21: 102070, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351238

RESUMO

Silver nanoparticles (AgNPs) are widely used in consumer and pharmaceutical products due to their antipathogenic properties. However, safety concerns have been raised due to their bioactive properties. While reports have demonstrated AgNPs can embed within the extracellular matrix, their effects on basement membrane (BM) production, integrin engagement, and tissue-integrity are not well-defined. This study analyzed the effects of AgNPs on BM production, composition and integrin/focal adhesion interactions in representative lung, esophageal, breast and colorectal epithelia models. A multidisciplinary approach including focused proteomics, QPCR arrays, pathway analyses, and immune-based, structural and functional assays was used to identify molecular and physiological changes in cell adhesions and the BM induced by acute and chronic AgNP exposure. Dysregulated targets included CD44 and transforming growth factor-beta, two proteins frequently altered during pathogenesis. Results indicate AgNP exposure interferes with BM and cell adhesion dynamics, and provide insight into the mechanisms of AgNP-induced disruption of epithelial physiology.


Assuntos
Membrana Basal/metabolismo , Moléculas de Adesão Celular/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata , Fator de Crescimento Transformador beta1/biossíntese , Linhagem Celular Tumoral , Humanos , Prata/química , Prata/farmacologia
14.
Sci Rep ; 8(1): 16334, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397248

RESUMO

We use shotgun proteomics to identify biomarkers of diagnostic and prognostic value in individuals diagnosed with amyotrophic lateral sclerosis. Matched cerebrospinal and plasma fluids were subjected to abundant protein depletion and analyzed by nano-flow liquid chromatography high resolution tandem mass spectrometry. Label free quantitation was used to identify differential proteins between individuals with ALS (n = 33) and healthy controls (n = 30) in both fluids. In CSF, 118 (p-value < 0.05) and 27 proteins (q-value < 0.05) were identified as significantly altered between ALS and controls. In plasma, 20 (p-value < 0.05) and 0 (q-value < 0.05) proteins were identified as significantly altered between ALS and controls. Proteins involved in complement activation, acute phase response and retinoid signaling pathways were significantly enriched in the CSF from ALS patients. Subsequently various machine learning methods were evaluated for disease classification using a repeated Monte Carlo cross-validation approach. A linear discriminant analysis model achieved a median area under the receiver operating characteristic curve of 0.94 with an interquartile range of 0.88-1.0. Three proteins composed a prognostic model (p = 5e-4) that explained 49% of the variation in the ALS-FRS scores. Finally we investigated the specificity of two promising proteins from our discovery data set, chitinase-3 like 1 protein and alpha-1-antichymotrypsin, using targeted proteomics in a separate set of CSF samples derived from individuals diagnosed with ALS (n = 11) and other neurological diseases (n = 15). These results demonstrate the potential of a panel of targeted proteins for objective measurements of clinical value in ALS.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Aprendizado de Máquina , Proteômica , Esclerose Lateral Amiotrófica/metabolismo , Humanos , Análise Multivariada
15.
J Anal Toxicol ; 42(4): 214-219, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29301034

RESUMO

Reports have suggested that patients with mental health disorders including major depressive disorder and schizophrenia have dramatically low adherence levels to prescribed medications. Patients on haloperidol (Haldol®) therapy, regardless of their disease, were found to have higher adherence levels-though still strikingly low. This work shows that high levels of the glucuronidated form of haloperidol are present in patient urine samples. Time-of-Flight (TOF) mass spectrometry experiments are consistent with both the presence of haloperidol glucuronide and that hydrolysis of haloperidol patient urine samples leads to significantly increased concentrations of free haloperidol. Urine samples collected from patients prescribed haloperidol were tested with and without hydrolysis revealing a significant increase in the number of patients testing positive when the samples were hydrolyzed before analysis. These data demonstrate that hydrolysis greatly improves the sensitivity and consistency of results for patients on haloperidol therapy resulting in positivity data that strongly correlates with the dosage form administered.


Assuntos
Glucuronidase/metabolismo , Haloperidol/urina , Urinálise/métodos , Cromatografia Líquida , Humanos , Hidrólise , Espectrometria de Massas em Tandem
16.
J Appl Lab Med ; 2(4): 543-554, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33636886

RESUMO

BACKGROUND: While validation of analytical (LC-MS/MS) methods has been documented in any number of articles and reference texts, the optimal design and subsequent validation of a method for over 30 analytes presents special challenges. Conventional approaches to calibration curves, controls, and run time are not tenable in such methods. This report details the practical aspects of designing and implementing such a method in accordance with College of American Pathologists validation criteria. METHODS: Conventional criteria were followed in the design and validation of a method for 34 analytes and 15 internal standards by LC-MS/MS. These criteria are laid out in a standard operating procedure, which is followed without exception and is consistent with College of American Pathologists criteria. RESULTS: The method presented herein provides quality results and accurate medication monitoring. The method was optimized to negate interferences (both from within the method and from potential concomitant compounds), increase throughput, and provide reproducible quality quantification over relevant analyte concentrations ranges. CONCLUSIONS: The method was designed primarily with quality and accurate medication monitoring in mind. The method achieves these goals by use of novel approaches to calibration curves and controls that both improve performance and minimize risk (financial and operational). As automation and LC-MS/MS equipment continue to improve, it is expected that more methods like this one will be developed.

17.
J Anal Toxicol ; 40(7): 486-91, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27405365

RESUMO

Oral fluid testing to assist in the assessment of treatment adherence for chronic pain patients is attractive for a number of reasons. However, efforts focused on interpreting patient results have been modest when compared to urine drug testing. This work details a retrospective approach developed to transform and normalize oral fluid testing results to provide a historical picture of patient values in this important test fluid. Using this approach, a model was developed using data from 6,800 independent patients who were both prescribed hydrocodone and tested positive (with limitations: reporting cutoff < X < upper limit of quantitation) by liquid chromatography-mass spectrometry. Patient demographic data were used to calculate the relevant parameters (e.g., calculated blood volume (CBV)) used in the transformation and normalization of the oral fluid data. The crucial normalizing factor in oral fluids was found to be the CBV which parallels the use of creatinine to normalize drug concentration levels in urine and is consistent with the view that oral fluid samples reflect plasma concentrations of the respective drugs. The resulting near Gaussian distribution is dose independent and as such should be of value to physicians in quickly assessing whether their patient is consistent with this historical population in the broad terms of this model. While this comparison alone is not definitive for adherence with a treatment regimen, together with patient interviews, prescription history and other clinical criteria, it can add an idea of expected patient values from oral fluid testing.


Assuntos
Analgésicos Opioides/metabolismo , Hidrocodona/metabolismo , Saliva/metabolismo , Detecção do Abuso de Substâncias/métodos , Humanos
18.
J Anal Toxicol ; 40(8): 595-600, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27405369

RESUMO

Poklis and Backer published a survey of the concentrations of fentanyl and norfentanyl that could be expected in urine from patients using Duragesic®, a transdermal fentanyl patch. That study employed a relatively small number of patient data points and analysis by Gas Chromatography/Mass Spectrometry. This work examines a larger population of patient positives for fentanyl and norfentanyl to determine whether more than a decade later the original report remains accurate in predicting the range and median levels of fentanyl and norfentanyl concentrations physicians can expect to see from their patients. Additionally, these data were transformed to develop a model that results in a near Gaussian distribution of urine drug test results. This retrospective approach was developed to transform and normalize urine drug testing results to provide a historical picture of expected patient values for this important analgesic. The resulting near Gaussian distribution is dose independent and as such should be of value to physicians in quickly assessing whether their patient is consistent with this historical population in the broad terms of this model. While this comparison alone is not definitive for adherence with a treatment regimen, together with patient interviews, prescription history and other clinical criteria, it can add an idea of expected patient values from urine drug testing.


Assuntos
Cromatografia Líquida , Fentanila/análogos & derivados , Fentanila/urina , Espectrometria de Massas em Tandem , Adesivo Transdérmico , Administração Cutânea , Adulto , Idoso , Feminino , Fentanila/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Estudos Retrospectivos , Detecção do Abuso de Substâncias
19.
J Anal Toxicol ; 40(4): 255-63, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26869715

RESUMO

To determine the true enantiomeric composition of methamphetamine urine drug testing results, chiral separation of dextro (D) and levo (L) enantiomers is necessary. While enantiomeric separation of methamphetamine has traditionally been accomplished using gas chromatography-mass spectrometry (GC-MS), chiral separation of D- and L-methamphetamine by chiral stationary phase (CSP) liquid chromatography-mass spectrometry/mass spectrometry (LC-MS-MS) has proved more reliable. Chirally selective detection of methamphetamine by GC-MS is often performed using L-N-trifluoroacetyl-prolyl chloride (TPC). L-TPC, a chiral compound, is known to have impurities that can affect the chiral composition percentages of the methamphetamine sample, potentially leading to inaccurate patient results. The comparative analysis of the samples run by GC and LC methods showed preferential bias of the GC method for producing error rates, consistent with previous research, of 8-19%. The CSP-LC-MS-MS method produces percent deviation errors of <2%. Additionally, the GC method failed to produce results that were 100% D- or L-isomer even for enantiomerically pure standards. A higher rate of D- and L-methamphetamine isomer racemization is seen in samples when analyzed by GC-MS using L-TPC-derivatizing agent. This racemization is not seen when these samples are tested with CSP-LC-MS-MS. Thus, a more accurate method of enantiomeric analysis is provided by CSP-LC-MS-MS.


Assuntos
Metanfetamina/isolamento & purificação , Calibragem , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Fluoracetatos/química , Humanos , Indicadores e Reagentes , Limite de Detecção , Metanfetamina/química , Metanfetamina/urina , Reprodutibilidade dos Testes , Extração em Fase Sólida , Estereoisomerismo , Espectrometria de Massas em Tandem
20.
J Anal Toxicol ; 39(8): 662-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26378142

RESUMO

Opioid testing represents a dominant share of the market in pain management clinical testing facilities. Testing of this drug class in oral fluid (OF) has begun to rise in popularity. OF analysis has traditionally required extensive clean-up protocols and sample concentration, which can be avoided. This work highlights the use of a fast, 'dilute-and-shoot' method that performs no considerable sample manipulation. A quantitative method for the determination of eight common opioids and associated metabolites (codeine, morphine, hydrocodone, hydromorphone, norhydrocodone, oxycodone, noroxycodone and oxymorphone) in OF is described herein. OF sample is diluted 10-fold in methanol/water and then analyzed using an Agilent chromatographic stack coupled with an AB SCIEX 4500. The method has a 2.2-min LC gradient and a cycle time of 2.9 min. In contrast to most published methods of this particular type, this method uses no sample clean-up or concentration and has a considerably faster LC gradient, making it ideal for very high-throughput laboratories. Importantly, the method requires only 100 µL of sample and is diluted 10-fold prior to injection to help with instrument viability. Baseline separation of all isobaric opioids listed above was achieved on a phenyl-hexyl column. The validated calibration range for this method is 2.5-1,000 ng/mL. This 'dilute-and-shoot' method removes the unnecessary, costly and time-consuming extraction steps found in traditional methods and still surpasses all analytical requirements.


Assuntos
Analgésicos Opioides/análise , Cromatografia Líquida/métodos , Saliva/química , Espectrometria de Massas em Tandem/métodos , Humanos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...