Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Entomol ; 61(3): 630-643, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38366894

RESUMO

There is growing interest in insecticide resistance in the mosquito, Aedes albopictus (Skuse), as its potential for spreading diseases is increasing as urbanization and control efforts intensify. Here we review the presence and diversity of mutations in the voltage-sensitive sodium channel (Vssc) gene associated with pyrethroid resistance and report on additional surveys of these mutations in new populations with an analysis of their spread. The known diversity of these mutations has increased in recent years including the identification of 26 non-synonymous mutations, although phenotypic data associating mutations with resistance remain limited. We provide data on mutations in several new locations including those in Timor Leste, Indonesia, and Vanuatu. We use population genomic data from ddRAD analyses of target populations with the 1534C mutation to identify single nucleotide polymorphisms (SNPs) associated with the mutant to test for clustering of SNPs based on the presence of the 1534C mutation rather than population origin. Our findings suggest spread of resistance alleles via genetic invasion, which is further supported by patterns from a genome-wide principal components analysis. These data point to movement of resistance alleles across wide areas with likely impacts on local control options.


Assuntos
Aedes , Resistência a Inseticidas , Mutação , Aedes/genética , Aedes/efeitos dos fármacos , Animais , Resistência a Inseticidas/genética , Canais de Sódio/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Piretrinas/farmacologia , Polimorfismo de Nucleotídeo Único , Indonésia , Inseticidas/farmacologia , Canais de Sódio Disparados por Voltagem/genética
2.
J Med Entomol ; 61(1): 250-256, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-37738428

RESUMO

Wolbachia (Hertig 1936) (Rickettsiales: Ehrlichiaceae) has emerged as a valuable biocontrol tool in the fight against dengue by suppressing the transmission of the virus through mosquitoes. Monitoring the dynamics of Wolbachia is crucial for evaluating the effectiveness of release programs. Mitochondrial (mtDNA) markers serve as important tools for molecular tracking of infected mitochondrial backgrounds over time but require an understanding of the variation in release sites. In this study, we investigated the mitochondrial lineages of Aedes aegypti (Linnaeus 1762) in Jeddah, Saudi Arabia, which is a prospective release site for the "wAlbBQ" Wolbachia-infected strain of this mosquito species. We employed a combination of comprehensive mitogenomic analysis (including all protein-coding genes) and mtDNA marker analysis (cox1 and nad5) using data collected from Jeddah. We combined our mitogenome and mtDNA marker data with those from previous studies to place mitochondrial variation in Saudi Arabia into a broader global context. Our findings revealed the presence of 4 subclades that can be broadly categorized into 2 major mitochondrial lineages. Ae. aegypti mosquitoes from Jeddah belonged to both major lineages. Whilst mitogenomic data offered a higher resolution for distinguishing Jeddah mosquitoes from the wAlbBQ strain, the combination of cox1 and nad5 mtDNA markers alone proved to be sufficient. This study provides the first important characterization of Ae. aegypti mitochondrial lineages in Saudi Arabia and offers essential baseline information for planning future molecular monitoring efforts during the release of Wolbachia-infected mosquitoes.


Assuntos
Aedes , Wolbachia , Animais , Arábia Saudita , Estudos Prospectivos , Mutação , DNA Mitocondrial , Wolbachia/genética , Mosquitos Vetores/genética
3.
J Med Entomol ; 60(5): 1061-1072, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37535973

RESUMO

Aedes notoscriptus (Skuse) is a container-inhabiting mosquito endemic to Australia that vectors arboviruses and is suspected to transmit Mycobacterium ulcerans, the cause of Buruli ulcer. We evaluated the effectiveness of the In2Care station, which suppresses mosquito populations via the entomopathogenic fungus, Beauveria bassiana, and the insect growth regulator pyriproxyfen, the latter of which is autodisseminated among larval habitats by contaminated mosquitoes. A field trial was conducted using 110 In2Care stations in a 50,000 m2 area and results were compared to 4 control areas that did not receive the treatment. Efficacy was evaluated by comparing egg counts and measuring larvicidal impact in surrounding breeding sites. Laboratory experiments validated the effect of B. bassiana on adult survival. Results of this field trial indicate that, 6 wk after the In2Care stations were deployed, treatment site ovitraps contained 43% fewer eggs than control site ovitraps, and 33% fewer eggs after 10 wk, suggesting that the In2Care station was able to reduce the egg density of Ae. notoscriptus. Population reduction remained evident for up to 3 wk after In2Care stations were removed. Treatment site ovitraps had significantly fewer Ae. notoscriptus eclosing than control site ovitraps, confirming the pyriproxyfen autodissemination feature of the stations. An average reduction of 50% in adult eclosion was achieved. Exposure to B. bassiana resulted in four-times higher mortality among adult mosquitoes. Additionally, using fresh In2Care nettings led to an 88% decrease in average survival compared to 4-wk-old nettings. The use of In2Care stations has potential for suppressing Ae. notoscriptus egg density.


Assuntos
Aedes , Animais , Austrália , Mosquitos Vetores , Controle de Mosquitos/métodos , Meio Ambiente
4.
Parasit Vectors ; 15(1): 426, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376932

RESUMO

BACKGROUND: Insecticide resistance (IR) monitoring is essential for evidence-based control of mosquito-borne diseases. While widespread pyrethroid resistance in Anopheles and Aedes species has been described in many countries, data for Papua New Guinea (PNG) are limited. Available data indicate that the local Anopheles populations in PNG remain pyrethroid-susceptible, making regular IR monitoring even more important. In addition, Aedes aegypti pyrethroid resistance has been described in PNG. Here, Anopheles and Aedes IR monitoring data generated from across PNG between 2017 and 2022 are presented. METHODS: Mosquito larvae were collected in larval habitat surveys and through ovitraps. Mosquitoes were reared to adults and tested using standard WHO susceptibility bioassays. DNA from a subset of Aedes mosquitoes was sequenced to analyse the voltage-sensitive sodium channel (Vssc) region for any resistance-related mutations. RESULTS: Approximately 20,000 adult female mosquitoes from nine PNG provinces were tested. Anopheles punctulatus sensu lato mosquitoes were susceptible to pyrethroids but there were signs of reduced mortality in some areas. Some Anopheles populations were also resistant to DDT. Tests also showed that Aedes. aegypti in PNG are resistant to pyrethroids and DDT and that there was also likelihood of bendiocarb resistance. A range of Vssc resistance mutations were identified. Aedes albopictus were DDT resistant and were likely developing pyrethroid resistance, given a low frequency of Vssc mutations was observed. CONCLUSIONS: Aedes aegypti is highly pyrethroid resistant and also shows signs of resistance against carbamates in PNG. Anopheles punctulatus s.l. and Ae. albopictus populations exhibit low levels of resistance against pyrethroids and DDT in some areas. Pyrethroid-only bed nets are currently the only programmatic vector control tool used in PNG. It is important to continue to monitor IR in PNG and develop proactive insecticide resistance management strategies in primary disease vectors to retain pyrethroid susceptibility especially in the malaria vectors for as long as possible.


Assuntos
Aedes , Anopheles , Arbovírus , Inseticidas , Malária , Piretrinas , Animais , Feminino , Resistência a Inseticidas/genética , DDT/farmacologia , Papua Nova Guiné , Mosquitos Vetores/genética , Piretrinas/farmacologia , Anopheles/genética , Malária/prevenção & controle , Larva , Inseticidas/farmacologia
5.
PLoS Negl Trop Dis ; 16(11): e0010913, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367854

RESUMO

Wolbachia, a gram-negative endosymbiotic bacterium widespread in arthropods, is well-known for changing the reproduction of its host in ways that increase its rate of spread, but there are also costs to hosts that can reduce this. Here we investigated a novel reproductive alteration of Wolbachia wAlbB on its host Aedes aegypti, using studies on mosquito life history traits, ovarian dissection, as well as gene expression assays. We found that an extended period of the larval stage as well as the egg stage (as previously shown) can increase the proportion of Wolbachia-infected females that become infertile; an effect which was not observed in uninfected females. Infertile females had incomplete ovarian formation and also showed a higher frequency of blood feeding following a prior blood meal, indicating that they do not enter a complete gonotrophic cycle. Treatments leading to infertility also decreased the expression of genes related to reproduction, especially the vitellogenin receptor gene whose product regulates the uptake of vitellogenin (Vg) into ovaries. Our results demonstrate effects associated with the development of infertility in wAlbB-infected Ae. aegypti females with implications for Wolbachia releases. The results also have implications for the evolution of Wolbachia infections in novel hosts.


Assuntos
Aedes , Ovário , Wolbachia , Animais , Feminino , Aedes/fisiologia , Infertilidade , Larva , Ovário/microbiologia , Wolbachia/fisiologia
6.
PLoS Negl Trop Dis ; 16(4): e0010243, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35395009

RESUMO

Aedes aegypti is the primary vector of exotic arboviruses (dengue, chikungunya and Zika) in Australia. Once established across much of Australia, this mosquito species remains prevalent in central and northern Queensland. In 2011, Ae. aegypti was re-discovered in the town of Gin Gin, Queensland, by health authorities during routine larval surveillance. This town is situated on a major highway that provides a distribution pathway into the highly vulnerable and populous region of the state where the species was once common. Following the detection, larval habitat and adult control activities were conducted as a public health intervention to eliminate the Ae. aegypti population and reduce the risk of exotic disease transmission. Importantly, genetic analysis revealed a homogenous cluster and small effective population vulnerable to an elimination strategy. By 2015, adult surveillance revealed the population had expanded throughout the centre of the town. In response, a collaboration between research agencies and local stakeholders activated a second control program in 2016 that included extensive community engagement, enhanced entomologic surveillance and vector control activities including the targeting of key containers, such as unsealed rainwater tanks. Here we describe a model of the public health intervention which successfully reduced the Ae. aegypti population below detection thresholds, using source reduction, insecticides and novel, intensive genetic surveillance methods. This outcome has important implications for future elimination work in small towns in regions sub-optimal for Ae. aegypti presence and reinforces the longstanding benefits of a partnership model for public health-based interventions for invasive urban mosquito species.


Assuntos
Aedes , Dengue , Infecção por Zika virus , Zika virus , Animais , Austrália , Cidades , Dengue/epidemiologia , Larva/genética , Mosquitos Vetores , Saúde Pública , Queensland/epidemiologia
7.
PLoS One ; 16(9): e0257781, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34555085

RESUMO

Detection of the Wolbachia endosymbiont in Aedes aegypti mosquitoes through real-time polymerase chain reaction assays is widely used during and after Wolbachia releases in dengue reduction trials involving the wMel and wAlbB strains. Although several different primer pairs have been applied in current successful Wolbachia releases, they cannot be used in a single assay to distinguish between these strains. Here, we developed a new diagnostic primer pair, wMwA, which can detect the wMel or wAlbB infection in the same assay. We also tested current Wolbachia primers and show that there is variation in their performance when they are used to assess the relative density of Wolbachia. The new wMwA primers provide an accurate and efficient estimate of the presence and density of both Wolbachia infections, with practical implications for Wolbachia estimates in field collected Ae. aegypti where Wolbachia releases have taken place.


Assuntos
Aedes/microbiologia , Infecções por Anaplasmataceae/diagnóstico , Primers do DNA/genética , Wolbachia/isolamento & purificação , Infecções por Anaplasmataceae/veterinária , Animais , Diagnóstico Precoce , Feminino , Sensibilidade e Especificidade , Wolbachia/genética
8.
Appl Environ Microbiol ; 87(20): e0126421, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34379518

RESUMO

Aedes mosquitoes harboring intracellular Wolbachia bacteria are being released in arbovirus and mosquito control programs. With releases taking place around the world, understanding the contribution of host variation to Wolbachia phenotype is crucial. We generated a Wolbachia transinfection (wAlbBQ) in Aedes aegypti and performed backcrossing to introduce the infection into Australian or Malaysian nuclear backgrounds. Whole Wolbachia genome sequencing shows that the wAlbBQ transinfection is nearly identical to the reference wAlbB genome, suggesting few changes since the infection was first introduced to A. aegypti over 15 years ago. However, these sequences were distinct from other available wAlbB genome sequences, highlighting the potential diversity of wAlbB in natural Aedes albopictus populations. Phenotypic comparisons demonstrate the effects of wAlbB infection on egg hatching and nuclear background on fecundity and body size but no interactions between wAlbB infection and nuclear background for any trait. The wAlbB infection was stable at high temperatures and showed perfect maternal transmission and cytoplasmic incompatibility regardless of the host background. Our results demonstrate the stability of wAlbB across host backgrounds and point to its long-term effectiveness for controlling arbovirus transmission and mosquito populations. IMPORTANCEWolbachia bacteria are being used to control the transmission of dengue virus and other arboviruses by mosquitoes. For Wolbachia release programs to be effective globally, Wolbachia infections must be stable across mosquito populations from different locations. In this study, we transferred Wolbachia (strain wAlbB) to Aedes aegypti mosquitoes with an Australian genotype and introduced the infection to Malaysian mosquitoes through backcrossing. We found that the phenotypic effects of Wolbachia are stable across both mosquito backgrounds. We sequenced the genome of wAlbB and found very few genetic changes despite spending over 15 years in a novel mosquito host. Our results suggest that the effects of Wolbachia infections are likely to remain stable across time and host genotype.


Assuntos
Aedes/microbiologia , Wolbachia/genética , Animais , Feminino , Resposta ao Choque Térmico , Masculino , Fenótipo , Transfecção
9.
Parasit Vectors ; 14(1): 361, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34247634

RESUMO

BACKGROUND: Dengue suppression often relies on control of the mosquito vector, Aedes aegypti, through applications of insecticides of which the pyrethroid group has played a dominant role. Insecticide resistance is prevalent in Ae. aegypti around the world, and the resulting reduction of insecticide efficacy is likely to exacerbate the impact of dengue. Dengue has been a public health problem in Saudi Arabia, particularly in Jeddah, since its discovery there in the 1990s, and insecticide use for vector control is widespread throughout the city. An alternative approach to insecticide use, based on blocking dengue transmission in mosquitoes by the endosymbiont Wolbachia, is being trialed in Jeddah following the success of this approach in Australia and Malaysia. Knowledge of insecticide resistance status of mosquito populations in Jeddah is a prerequisite for establishing a Wolbachia-based dengue control program as releases of Wolbachia mosquitoes succeed when resistance status of the release population is similar to that of the wild population. METHODS: WHO resistance bioassays of mosquitoes with deltamethrin, permethrin and DDT were used in conjunction with TaqMan® SNP Genotyping Assays to characterize mutation profiles of Ae. aegypti. RESULTS: Screening of the voltage-sensitive sodium channel (Vssc), the pyrethroid target site, revealed mutations at codons 989, 1016 and 1534 in Ae. aegypti from two districts of Jeddah. The triple mutant homozygote (1016G/1534C/989P) was confirmed from Al Safa and Al Rawabi. Bioassays with pyrethroids (Type I and II) and DDT showed that mosquitoes were resistant to each of these compounds based on WHO definitions. An association between Vssc mutations and resistance was established for the Type II pyrethroid, deltamethrin, with one genotype (989P/1016G/1534F) conferring a survival advantage over two others (989S/1016V/1534C and the triple heterozygote). An indication of synergism of Type I pyrethroid activity with piperonyl butoxide suggests that detoxification by cytochrome P450s accounts for some of the pyrethroid resistance response in Ae. aegypti populations from Jeddah. CONCLUSIONS: The results provide a baseline for monitoring and management of resistance as well as knowledge of Vssc genotype frequencies required in Wolbachia release populations to ensure homogeneity with the target field population. Vssc mutation haplotypes observed show some similarity with those from Ae. aegypti in southeast Asia and the Indo-Pacific, but the presence of the triple mutant haplotype in three genotypes indicates that the species in this region may have a unique population history.


Assuntos
Aedes/efeitos dos fármacos , Aedes/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mutação , Piretrinas/farmacologia , Canais de Sódio/genética , Wolbachia/fisiologia , Animais , Bioensaio/métodos , Bioensaio/estatística & dados numéricos , Dengue/prevenção & controle , Dengue/transmissão , Feminino , Controle de Mosquitos/métodos , Controle de Mosquitos/estatística & dados numéricos , Arábia Saudita
10.
Trends Parasitol ; 37(10): 907-921, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34074606

RESUMO

Mosquito control strategies increasingly apply knowledge from population genomics research. This review highlights recent applications to three research domains: mosquito invasions, insecticide resistance evolution, and rear and release programs. Current research trends follow developments in reference assemblies, either as improvements to existing assemblies (particularly Aedes) or assemblies for new taxa (particularly Anopheles). With improved assemblies, studies of invasive and rear and release target populations are better able to incorporate adaptive as well as demographic hypotheses. New reference assemblies are aiding comparisons of insecticide resistance across sister taxa while helping resolve taxon boundaries amidst frequent introgression. Anopheles gene drive deployments and improved Aedes genome assemblies should lead to a convergence in research aims for Anopheles and Aedes in the coming years.


Assuntos
Culicidae , Genômica , Controle de Mosquitos , Animais , Culicidae/genética , Genoma de Inseto/genética , Resistência a Inseticidas/genética , Controle de Mosquitos/métodos
11.
Insects ; 11(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823726

RESUMO

Specific sodium channel gene mutations confer target site resistance to pyrethroid insecticides in mosquitoes and other insects. In Aedes mosquito species, multiple mutations that contribute to resistance vary in their importance around the world. Here, we characterize voltage sensitive sodium channel (Vssc) mutations in populations of Aedesaegypti from Kuala Lumpur, Malaysia, and look at their persistence in populations affected by ongoing Wolbachia releases (a dengue control measure). We also describe a Vssc mutation in Aedesalbopictus (F1534L) found for the first time in Malaysia. We show that there are three predominant Vssc haplotypes in Aedesaegypti in this region, which all persist with regular backcrossing, thereby maintaining the original genetic composition of the populations. We identify changes in genotype frequency in closed populations of Ae. aegypti maintained for multiple generations in laboratory culture, suggesting different fitness costs associated with the genotypes, some of which may be associated with the sex of the mosquito. Following population replacement of Ae. aegypti by Wolbachia in the target area, however, we find that the Vssc mutations have persisted at pre-release levels. Mosquitoes in two genotype classes demonstrate a type I pyrethroid resistance advantage over wildtype mosquitoes when exposed to 0.25% permethrin. This resistance advantage is even more pronounced with a type II pyrethroid, deltamethrin (0.03%). The results point to the importance of these mutations in pyrethroid resistance in mosquito populations and the need for regular backcrossing with male mosquitoes from the field to maintain similarity of genetic background and population integrity during Wolbachia releases.

12.
Parasit Vectors ; 13(1): 429, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32831122

RESUMO

BACKGROUND: In the inner city of Yogyakarta, Indonesia, insecticide resistance is expected in the main dengue vector, Aedes aegypti, because of the intensive local application of pyrethroid insecticides. However, detailed information about the nature of resistance in this species is required to assist the release of Wolbachia mosquitoes in a dengue control program, so that we can ensure that insecticide resistance in the strain of Ae. aegypti being released matches that of the background population. METHODS: High-resolution melt genotyping was used to screen for kdr mutations associated with pyrethroid resistance in the voltage-sensitive sodium channel (VSSC) gene in Ae. aegypti of some areas in the inner city of Yogyakarta. RESULTS: The results show that the V1016G mutation predominated, with individuals homozygous for the 1016G allele at a frequency of 82.1% and the mutant allele G at a frequency of 92%. Two patterns of co-occurrence of mutations were detected in this study, homozygous individuals V1016G/S989P; and heterozygous individuals V1016G/F1534C/S989P. We found the simultaneous occurrence of kdr mutations V1016G and F1534C at all collection sites, but not within individual mosquitoes. Homozygous mutants at locus 1016 were homozygous wild-type at locus 1534 and vice versa, and heterozygous V1016G were also heterozygous for F1534C. The most common tri-locus genotype co-occurrences were homozygous mutant 1016GG and homozygous wild-type FF1534, combined with homozygous mutant 989PP (GG/FF/PP) at a frequency of 38.28%. CONCLUSIONS: Given the relatively small differences in frequency of resistance alleles across the city area, locality variations in resistance should have minor implications for the success of Wolbachia mosquito trials being undertaken in the Yogyakarta area.


Assuntos
Aedes , Controle de Mosquitos , Canais de Sódio Disparados por Voltagem/genética , Aedes/efeitos dos fármacos , Aedes/genética , Aedes/microbiologia , Animais , Agentes de Controle Biológico , Dengue/transmissão , Genótipo , Técnicas de Genotipagem , Indonésia , Proteínas de Insetos/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Mosquitos Vetores/microbiologia , Mutação , Taxa de Mutação , Controle Biológico de Vetores , Piretrinas/farmacologia , Wolbachia/patogenicidade
13.
J Med Entomol ; 57(5): 1567-1574, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32307514

RESUMO

In recent decades, the occurrence and distribution of arboviral diseases transmitted by Aedes aegypti mosquitoes has increased. In a new control strategy, populations of mosquitoes infected with Wolbachia are being released to replace existing populations and suppress arboviral disease transmission. The success of this strategy can be affected by high temperature exposure, but the impact of low temperatures on Wolbachia-infected Ae. aegypti is unclear, even though low temperatures restrict the abundance and distribution of this species. In this study, we considered low temperature cycles relevant to the spring season that are close to the distribution limits of Ae. aegypti, and tested the effects of these temperature cycles on Ae. aegypti, Wolbachia strains wMel and wAlbB, and Wolbachia phage WO. Low temperatures influenced Ae. aegypti life-history traits, including pupation, adult eclosion, and fertility. The Wolbachia-infected mosquitoes, especially wAlbB, performed better than uninfected mosquitoes. Temperature shift experiments revealed that low temperature effects on life history and Wolbachia density depended on the life stage of exposure. Wolbachia density was suppressed at low temperatures but densities recovered with adult age. In wMel Wolbachia there were no low temperature effects specific to Wolbachia phage WO. The findings suggest that Wolbachia-infected Ae. aegypti are not adversely affected by low temperatures, indicating that the Wolbachia replacement strategy is suitable for areas experiencing cool temperatures seasonally.


Assuntos
Aedes/microbiologia , Temperatura Baixa , Wolbachia/virologia , Aedes/fisiologia , Animais , Feminino , Fertilidade
14.
Mol Ecol ; 29(9): 1628-1641, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32246542

RESUMO

Nations throughout the Indo-Pacific region use pyrethroid insecticides to control Aedes aegypti, the mosquito vector of dengue, often without knowledge of pyrethroid resistance status of the pest or origin of resistance. Two mutations (V1016G + F1534C) in the sodium channel gene (Vssc) of Ae. aegypti modify ion channel function and cause target-site resistance to pyrethroid insecticides, with a third mutation (S989P) having a potential additive effect. Of 27 possible genotypes involving these mutations, some allelic combinations are never seen whereas others predominate. Here, five allelic combinations common in Ae. aegypti from the Indo-Pacific region are described and their geographical distributions investigated using genome-wide SNP markers. We tested the hypothesis that resistance allele combinations evolved de novo in populations versus the alternative that dispersal of Ae. aegypti between populations facilitated genetic invasions of allele combinations. We used latent factor mixed-models to detect SNPs throughout the genome that showed structuring in line with resistance allele combinations and compared variation at SNPs within the Vssc gene with genome-wide variation. Mixed-models detected an array of SNPs linked to resistance allele combinations, all located within or in close proximity to the Vssc gene. Variation at SNPs within the Vssc gene was structured by resistance profile, whereas genome-wide SNPs were structured by population. These results demonstrate that alleles near to resistance mutations have been transferred between populations via linked selection. This indicates that genetic invasions have contributed to the widespread occurrence of Vssc allele combinations in Ae. aegypti in the Indo-Pacific region, pointing to undocumented mosquito invasions between countries.


Assuntos
Aedes , Resistência a Inseticidas/genética , Inseticidas , Piretrinas , Aedes/genética , Animais , Inseticidas/farmacologia , Mosquitos Vetores/genética , Mutação , Polimorfismo de Nucleotídeo Único , Canais de Sódio/genética
15.
Am J Trop Med Hyg ; 102(1): 223-231, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31769394

RESUMO

Host seeking is an essential process in mosquito reproduction. Field releases of modified mosquitoes for population replacement rely on successful host seeking by female mosquitoes, but host-seeking ability is rarely tested in a realistic context. We tested the host-seeking ability of female Aedes aegypti mosquitoes using a semi-field system. Females with different Wolbachia infection types (wMel-, wAlbB-infected, and uninfected) or from different origins (laboratory and field) were released at one end of a semi-field cage and recaptured as they landed on human experimenters 15 m away. Mosquitoes from each population were then identified with molecular tools or through minimal dusting with fluorescent powder. Wolbachia-infected and uninfected populations had similar average durations to landing and overall recapture proportions, as did laboratory and field-sourced Ae. aegypti. These results indicate that the host-seeking ability of mosquitoes is not negatively affected by Wolbachia infection or long-term laboratory maintenance. This method provides an approach to study the host-seeking ability of mosquitoes in a realistic setting, which will be useful when evaluating strains of mosquitoes that are planned for releases into the field to suppress arbovirus transmission.


Assuntos
Aedes/microbiologia , Aedes/fisiologia , Comportamento Alimentar/fisiologia , Animais , Feminino , Controle de Mosquitos/métodos , Controle Biológico de Vetores/métodos , Wolbachia
16.
PLoS One ; 14(11): e0225321, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31747432

RESUMO

With Wolbachia-based arbovirus control programs being scaled and operationalised around the world, cost effective and reliable detection of Wolbachia in field samples and laboratory stocks is essential for quality control. Here we validate a modified loop-mediated isothermal amplification (LAMP) assay for routine scoring of Wolbachia in mosquitoes from laboratory cultures and the field, applicable to any setting. We show that this assay is a rapid and robust method for highly sensitive and specific detection of wAlbB Wolbachia infection within Aedes aegypti under a variety of conditions. We test the quantitative nature of the assay by evaluating pooled mixtures of Wolbachia-infected and uninfected mosquitoes and show that it is capable of estimating infection frequencies, potentially circumventing the need to perform large-scale individual analysis for wAlbB infection status in the course of field monitoring. These results indicate that LAMP assays are useful for routine screening particularly under field conditions away from laboratory facilities.


Assuntos
Aedes/microbiologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Wolbachia/genética , Animais , DNA Bacteriano/química , DNA Bacteriano/genética , Técnicas de Amplificação de Ácido Nucleico/normas , Sensibilidade e Especificidade , Wolbachia/patogenicidade
17.
Curr Biol ; 29(24): 4241-4248.e5, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31761702

RESUMO

Dengue has enormous health impacts globally. A novel approach to decrease dengue incidence involves the introduction of Wolbachia endosymbionts that block dengue virus transmission into populations of the primary vector mosquito, Aedes aegypti. The wMel Wolbachia strain has previously been trialed in open releases of Ae. aegypti; however, the wAlbB strain has been shown to maintain higher density than wMel at high larval rearing temperatures. Releases of Ae. aegypti mosquitoes carrying wAlbB were carried out in 6 diverse sites in greater Kuala Lumpur, Malaysia, with high endemic dengue transmission. The strain was successfully established and maintained at very high population frequency at some sites or persisted with additional releases following fluctuations at other sites. Based on passive case monitoring, reduced human dengue incidence was observed in the release sites when compared to control sites. The wAlbB strain of Wolbachia provides a promising option as a tool for dengue control, particularly in very hot climates.


Assuntos
Aedes/microbiologia , Dengue/prevenção & controle , Controle Biológico de Vetores/métodos , Wolbachia/metabolismo , Aedes/genética , Aedes/metabolismo , Animais , Vírus da Dengue/metabolismo , Vírus da Dengue/patogenicidade , Feminino , Humanos , Insetos Vetores , Malásia , Masculino , Mosquitos Vetores , Wolbachia/genética
18.
Evol Appl ; 12(6): 1136-1146, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31297145

RESUMO

Biological invasions are increasing globally in number and extent despite efforts to restrict their spread. Knowledge of incursion pathways is necessary to prevent new invasions and to design effective biosecurity protocols at source and recipient locations. This study uses genome-wide single nucleotide polymorphisms (SNPs) to determine the origin of 115 incursive Aedes aegypti(yellow fever mosquito) detected at international ports in Australia and New Zealand. We also genotyped mosquitoes at three point mutations in the voltage-sensitive sodium channel (Vssc) gene: V1016G, F1534C and S989P. These mutations confer knockdown resistance to synthetic pyrethroid insecticides, widely used for controlling invertebrate pests. We first delineated reference populations using Ae. aegypti sampled from 15 locations in Asia, South America, Australia and the Pacific Islands. Incursives were assigned to these populations using discriminant analysis of principal components (DAPC) and an assignment test with a support vector machine predictive model. Bali, Indonesia, was the most common origin of Ae. aegypti detected in Australia, while Ae. aegypti detected in New Zealand originated from Pacific Islands such as Fiji. Most incursives had the same allelic genotype across the three Vsscgene point mutations, which confers strong resistance to synthetic pyrethroids, the only insecticide class used in current, widely implemented aircraft disinsection protocols endorsed by the World Health Organization (WHO). Additionally, all internationally assigned Ae. aegypti had Vssc point mutations linked to pyrethroid resistance that are not found in Australian populations. These findings demonstrate that protocols for preventing introductions of invertebrates must consider insecticide resistance, and highlight the usefulness of genomic data sets for managing global biosecurity objectives.

19.
Parasit Vectors ; 12(1): 333, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31269965

RESUMO

BACKGROUND: Aedes aegypti and Ae. albopictus are important vectors of infectious diseases, especially those caused by arboviruses such as dengue, chikungunya and Zika. Aedes aegypti is very well adapted to urban environments, whereas Ae. albopictus inhabits more rural settings. Pyrethroid resistance is widespread in these vectors, but limited data exist from the Southwest Pacific Region, especially from Melanesia. While Aedes vector ecology is well documented in Australia, where incursion of Ae. albopictus and pyrethroid resistance have so far been prevented, almost nothing is known about Aedes populations in neighbouring Papua New Guinea (PNG). With pyrethroid resistance documented in parts of Indonesia but not in Australia, it is important to determine the distribution of susceptible and resistant Aedes populations in this region. METHODS: The present study was aimed at assessing Aedes populations for insecticide resistance in Madang and Port Moresby, located on the north and south coasts of PNG, respectively. Mosquitoes were collected using ovitraps and reared in an insectary. Standard WHO bioassays using insecticide-treated filter papers were conducted on a total of 253 Ae. aegypti and 768 Ae. albopictus adult mosquitoes. Subsets of samples from both species (55 Ae. aegypti and 48 Ae. albopictus) were screened for knockdown resistance mutations in the voltage-sensitive sodium channel (Vssc) gene, the target site of pyrethroid insecticides. RESULTS: High levels of resistance against pyrethroids were identified in Ae. aegypti from Madang and Port Moresby. Aedes albopictus exhibited susceptibility to pyrethroids, but moderate levels of resistance to DDT. Mutations associated with pyrethroid resistance were detected in all Ae. aegypti samples screened. Some genotypes found in the present study had been observed previously in Indonesia. No Vssc mutations associated with pyrethroid resistance were found in the Ae. albopictus samples. CONCLUSIONS: To our knowledge, this is the first report of pyrethroid resistance in Ae. aegypti mosquitoes in PNG. Interestingly, usage of insecticides in PNG is low, apart from long-lasting insecticidal nets distributed for malaria control. Further investigations on how these resistant Ae. aegypti mosquito populations arose in PNG and how they are being sustained are warranted.


Assuntos
Aedes/efeitos dos fármacos , Febre de Chikungunya/transmissão , Dengue/transmissão , Resistência a Inseticidas , Mosquitos Vetores/efeitos dos fármacos , Infecção por Zika virus/transmissão , Aedes/virologia , Animais , Arbovírus/fisiologia , Feminino , Inseticidas/farmacologia , Mosquitos Vetores/virologia , Papua Nova Guiné , Piretrinas/farmacologia
20.
J Med Entomol ; 56(4): 1078-1086, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-30889242

RESUMO

Wolbachia-infected Aedes aegypti (L.) mosquitoes for control of dengue transmission are being released experimentally in tropical regions of Australia, south-east Asia, and South America. To become established, the Wolbachia Hertig (Rickettsiales: Rickettsiaceae) strains used must induce expression of cytoplasmic incompatibility (CI) in matings between infected males and uninfected females so that infected females have a reproductive advantage, which will drive the infection through field populations. Wolbachia is a Rickettsia-like alphaproteobacterium which can be affected by tetracycline antibiotics. We investigated whether exposure of Wolbachia-infected mosquitoes to chlortetracycline at environmentally relevant levels during their aquatic development resulted in loss or reduction of infection in three strains, wAlbB, wMel, and wMelPop. Wolbachia density was reduced for all three strains at the tested chlortetracycline concentrations of 5 and 50 µg/liter. Two of the strains, wMel and wMelPop, showed a breakdown in CI. The wAlbB strain maintained CI and may be useful at breeding sites where tetracycline contamination has occurred. This may include drier regions where Ae. aegypti can utilize subterranean water sources and septic tanks as breeding sites.


Assuntos
Aedes/microbiologia , Clortetraciclina/toxicidade , Poluentes Químicos da Água/toxicidade , Wolbachia/efeitos dos fármacos , Aedes/efeitos dos fármacos , Animais , Feminino , Larva/efeitos dos fármacos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...