Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Health Monit ; 8(Suppl 4): 76-102, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37799537

RESUMO

Background: Allergic diseases, especially inhalation allergies, have reached epidemic levels and environmental factors play an important role in their development. Climate change influences the occurrence, frequency, and severity of allergic diseases. Methods: The contents of this article were selected by the authors and developed section by section according to their expertise and the current state of knowledge. The sections were then discussed and agreed upon amongst all authors. Results: The article highlights direct and indirect effects of climate change on allergies. It goes into detail about the connections between climate change and (new) pollen allergens as well as (new) occupational inhalation allergens, explains the effects of climate change on the clinical picture of atopic dermatitis, discusses the connections between air pollutants and allergies, and provides information about the phenomenon of thunderstorm asthma. Conclusions: There is a need for action in the field of pollen and fungal spore monitoring, allergy and sensitisation monitoring, urban planning from an allergological perspective, and changes in the working environment, among others.

2.
Int J Biometeorol ; 55(3): 339-51, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20665052

RESUMO

Climate change, whether natural or human-caused, will have an impact on human life, including recreation and tourism among other things. In this study, methods from biometeorology and tourism climatology are used to assess the effect of a changed climate on tourism and recreation in particular. The study area is the Black Forest mountainous region of south-west Germany, which is well known for its tourist and recreational assets. Climate model projections for the 2021-2050 period based on REMO-UBA simulations with a high spatial resolution of 10 km are compared to a 30-year reference period (1971-2000) using the IPCC emission scenarios A1B and B1. The results show that the mean winter air temperature will increase by up to 1.8°C, which is the most pronounced warming compared to the other seasons. The annual precipitation amount will increase marginally by 5% in the A1B scenario and 10% in the B1 scenario. Winter precipitation contributes about 10% (A1B) and 30% (B1) to variations in annual precipitation. Although the results show that winter precipitation will increase slightly, snow days affecting skiing will be reduced on average by approximately 40% due to regional warming. Cold stress will be reduced on average by up to 25%. The result is that the thermal environment will be advanced, and warmer winters are likely to lead to an upward altitudinal shift of ski resorts and winter sport activities, thus displacing land-use currently dedicated to nature conservation.


Assuntos
Mudança Climática , Clima , Monitoramento Ambiental , Recreação , Viagem/estatística & dados numéricos , Altitude , Monitoramento Ambiental/estatística & dados numéricos , Alemanha , Humanos , Estações do Ano , Neve , Temperatura , Fatores de Tempo , Árvores
3.
Int J Biometeorol ; 55(2): 173-86, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20490572

RESUMO

Climate, climate change and tourism all interact. Part of the public discussion about climate change focusses on the tourism sector, with direct and indirect impacts being of equally high relevance. Climate and tourism are closely linked. Thus, climate is a very decisive factor in choices both of destination and of type of journey (active holidays, wellness, and city tours) in the tourism sector. However, whether choices about destinations or types of trip will alter with climate change is difficult to predict. Future climates can be simulated and projected, and the tendencies of climate parameters can be estimated using global and regional climate models. In this paper, the focus is on climate change in the mountainous regions of southwest Germany - the Black Forest. The Black Forest is one of the low mountain ranges where both winter and summer tourism are vulnerable to climate change due to its southern location; the strongest climatic changes are expected in areas covering the south and southwest of Germany. Moreover, as the choice of destination is highly dependent on good weather, a climatic assessment for tourism is essential. Thus, the aim of this study was to estimate climatic changes in mountainous regions during summer, especially for tourism and recreation. The assessment method was based on human-biometeorology as well as tourism-climatologic approaches. Regional climate simulations based on the regional climate model REMO were used for tourism-related climatic analyses. Emission scenarios A1B and B1 were considered for the time period 2021 to 2050, compared to the 30-year base period of 1971-2000, particularly for the warm period of the year, defined here as the months of March-November. In this study, we quantified the frequency, but not the means, of climate parameters. The study results show that global and regional warming is reflected in an increase in annual mean air temperature, especially in autumn. Changes in the spring show a slight negative trend, which is in line with the trend of a decrease in physiologically equivalent temperature as well as in thermal comfort conditions. Due to the rising air temperature, heat stress as well as sultry conditions are projected to become more frequent, affecting human health and recreation, especially at lower lying altitudes. The tops of the mountains and higher elevated areas still have the advantage of offering comfortable climatic conditions.


Assuntos
Clima , Atividades de Lazer , Estações do Ano , Viagem/estatística & dados numéricos , Árvores , Alemanha , Humanos
4.
Int J Biometeorol ; 54(4): 479-83, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20091322

RESUMO

The concept of physiologically equivalent temperature (PET) has been applied to the analysis of thermal bioclimatic conditions in Freiburg, Germany, to show if days with extreme bioclimatic conditions will change and how extreme thermal conditions can be modified by changes in mean radiant temperature and wind speed. The results show that there will be an increase of days with heat stress (PET > 35 degrees C) in the order of 5% (from 9.2% for 1961-1990) and a decrease of days with cold stress (PET < 0 degrees C) from 16.4% to 3.8% per year. The conditions can be modified by measures modifying radiation and wind speed in the order of more than 10% of days per year by reducing global radiation in complex structures or urban areas.


Assuntos
Mudança Climática , Aclimatação , Temperatura Baixa/efeitos adversos , Alemanha , Temperatura Alta/efeitos adversos , Humanos , Conceitos Meteorológicos , Saúde da População Urbana
5.
Int J Biometeorol ; 54(1): 45-61, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19705164

RESUMO

Due to the public discussion about global and regional warming, the regional climate and the modified climate conditions are analyzed exemplarily for three different regions in the southern Black Forest (southwest Germany). The driving question behind the present study was how can tourism adapt to modified climate conditions and associated changes to the tourism potential in low mountain ranges. The tourism potential is predominately based on the attractiveness of natural resources being climate-sensitive. In this study, regional climate simulations (A1B) are analyzed by using the REMO model. To analyze the climatic tourism potential, the following thermal, physical and aesthetic parameters are considered for the time span 1961-2050: thermal comfort, heat and cold stress, sunshine, humid-warm conditions (sultriness), fog, precipitation, storm, and ski potential (snow cover). Frequency classes of these parameters expressed as a percentage are processed on a monthly scale. The results are presented in form of the Climate-Tourism-Information-Scheme (CTIS). Due to warmer temperatures, winters might shorten while summers might lengthen. The lowland might be more affected by heat and sultriness (e.g., Freiburg due to the effects of urban climate). To adapt to a changing climate and tourism, the awareness of both stakeholders and tourists as well as the adaptive capability are essential.


Assuntos
Mudança Climática/estatística & dados numéricos , Modelos Teóricos , Viagem/estatística & dados numéricos , Árvores , Simulação por Computador , Alemanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA