Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbes Environ ; 39(1)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38522927

RESUMO

Parmales (Bolidophyceae) is a minor eukaryotic phytoplankton group, sister to diatoms, which exists as two distinct forms of unicellular organisms: silicified cells and naked flagellates. Since their discovery, many field studies on Parmales have been performed; however, their global distribution has not yet been examined in detail. We herein compiled more than 3,000 marine DNA metabarcoding datasets targeting the V4 region of the 18S rRNA gene from the EukBank database. By linking this large dataset with the latest morphological and genetic information, we provide updated estimates on the diversity and distribution of Parmales in the global ocean at a fine taxonomic resolution. Parmalean amplicon sequence variants (ASVs) were detected in nearly 90% of the samples analyzed. However, the relative abundance of parmaleans in the eukaryotic community was less than 0.2% on average, and the estimated true richness of parmalean ASVs was approximately 316 ASVs, confirming their low abundance and diversity. A phylogenetic ana-lysis divided these algae into four clades, and three known morphotypes of silicified cells were classified into three different clades. The abundance of Parmales is generally high in the poles and decreases towards the tropics, and individual clades/subclades show further distinctions in their distribution. Collectively, the present results suggest clade/subclade-specific adaptation to different ecological niches.


Assuntos
Biodiversidade , Diatomáceas , Filogenia , Fitoplâncton/genética , Diatomáceas/genética , Ecossistema
2.
Nat Commun ; 14(1): 6233, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828003

RESUMO

Despite being perennially frigid, polar oceans form an ecosystem hosting high and unique biodiversity. Various organisms show different adaptive strategies in this habitat, but how viruses adapt to this environment is largely unknown. Viruses of phyla Nucleocytoviricota and Mirusviricota are groups of eukaryote-infecting large and giant DNA viruses with genomes encoding a variety of functions. Here, by leveraging the Global Ocean Eukaryotic Viral database, we investigate the biogeography and functional repertoire of these viruses at a global scale. We first confirm the existence of an ecological barrier that clearly separates polar and nonpolar viral communities, and then demonstrate that temperature drives dramatic changes in the virus-host network at the polar-nonpolar boundary. Ancestral niche reconstruction suggests that adaptation of these viruses to polar conditions has occurred repeatedly over the course of evolution, with polar-adapted viruses in the modern ocean being scattered across their phylogeny. Numerous viral genes are specifically associated with polar adaptation, although most of their homologues are not identified as polar-adaptive genes in eukaryotes. These results suggest that giant viruses adapt to cold environments by changing their functional repertoire, and this viral evolutionary strategy is distinct from the polar adaptation strategy of their hosts.


Assuntos
Vírus Gigantes , Vírus , Vírus Gigantes/genética , Genoma Viral/genética , Ecossistema , Oceanos e Mares , Filogenia , Vírus de DNA/genética , Genômica , Vírus/genética , Eucariotos/genética
3.
ISME Commun ; 3(1): 101, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740029

RESUMO

Satellite remote sensing is a powerful tool to monitor the global dynamics of marine plankton. Previous research has focused on developing models to predict the size or taxonomic groups of phytoplankton. Here, we present an approach to identify community types from a global plankton network that includes phytoplankton and heterotrophic protists and to predict their biogeography using global satellite observations. Six plankton community types were identified from a co-occurrence network inferred using a novel rDNA 18 S V4 planetary-scale eukaryotic metabarcoding dataset. Machine learning techniques were then applied to construct a model that predicted these community types from satellite data. The model showed an overall 67% accuracy in the prediction of the community types. The prediction using 17 satellite-derived parameters showed better performance than that using only temperature and/or the concentration of chlorophyll a. The constructed model predicted the global spatiotemporal distribution of community types over 19 years. The predicted distributions exhibited strong seasonal changes in community types in the subarctic-subtropical boundary regions, which were consistent with previous field observations. The model also identified the long-term trends in the distribution of community types, which suggested responses to ocean warming.

4.
ISME Commun ; 3(1): 83, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596349

RESUMO

For decades, marine plankton have been investigated for their capacity to modulate biogeochemical cycles and provide fishery resources. Between the sunlit (epipelagic) layer and the deep dark waters, lies a vast and heterogeneous part of the ocean: the mesopelagic zone. How plankton composition is shaped by environment has been well-explored in the epipelagic but much less in the mesopelagic ocean. Here, we conducted comparative analyses of trans-kingdom community assemblages thriving in the mesopelagic oxygen minimum zone (OMZ), mesopelagic oxic, and their epipelagic counterparts. We identified nine distinct types of intermediate water masses that correlate with variation in mesopelagic community composition. Furthermore, oxygen, NO3- and particle flux together appeared as the main drivers governing these communities. Novel taxonomic signatures emerged from OMZ while a global co-occurrence network analysis showed that about 70% of the abundance of mesopelagic plankton groups is organized into three community modules. One module gathers prokaryotes, pico-eukaryotes and Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) from oxic regions, and the two other modules are enriched in OMZ prokaryotes and OMZ pico-eukaryotes, respectively. We hypothesize that OMZ conditions led to a diversification of ecological niches, and thus communities, due to selective pressure from limited resources. Our study further clarifies the interplay between environmental factors in the mesopelagic oxic and OMZ, and the compositional features of communities.

5.
ISME Commun ; 3(1): 84, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598259

RESUMO

Research on marine microbial communities is growing, but studies are hard to compare because of variation in seawater sampling protocols. To help researchers in the inter-comparison of studies that use different seawater sampling methodologies, as well as to help them design future sampling campaigns, we developed the EuroMarine Open Science Exploration initiative (EMOSE). Within the EMOSE framework, we sampled thousands of liters of seawater from a single station in the NW Mediterranean Sea (Service d'Observation du Laboratoire Arago [SOLA], Banyuls-sur-Mer), during one single day. The resulting dataset includes multiple seawater processing approaches, encompassing different material-type kinds of filters (cartridge membrane and flat membrane), three different size fractionations (>0.22 µm, 0.22-3 µm, 3-20 µm and >20 µm), and a number of different seawater volumes ranging from 1 L up to 1000 L. We show that the volume of seawater that is filtered does not have a significant effect on prokaryotic and protist diversity, independently of the sequencing strategy. However, there was a clear difference in alpha and beta diversity between size fractions and between these and "whole water" (with no pre-fractionation). Overall, we recommend care when merging data from datasets that use filters of different pore size, but we consider that the type of filter and volume should not act as confounding variables for the tested sequencing strategies. To the best of our knowledge, this is the first time a publicly available dataset effectively allows for the clarification of the impact of marine microbiome methodological options across a wide range of protocols, including large-scale variations in sampled volume.

6.
Commun Biol ; 6(1): 697, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420035

RESUMO

The order Parmales (class Bolidophyceae) is a minor group of pico-sized eukaryotic marine phytoplankton that contains species with cells surrounded by silica plates. Previous studies revealed that Parmales is a member of ochrophytes and sister to diatoms (phylum Bacillariophyta), the most successful phytoplankton group in the modern ocean. Therefore, parmalean genomes can serve as a reference to elucidate both the evolutionary events that differentiated these two lineages and the genomic basis for the ecological success of diatoms vs. the more cryptic lifestyle of parmaleans. Here, we compare the genomes of eight parmaleans and five diatoms to explore their physiological and evolutionary differences. Parmaleans are predicted to be phago-mixotrophs. By contrast, diatoms have lost genes related to phagocytosis, indicating the ecological specialization from phago-mixotrophy to photoautotrophy in their early evolution. Furthermore, diatoms show significant enrichment in gene sets involved in nutrient uptake and metabolism, including iron and silica, in comparison with parmaleans. Overall, our results suggest a strong evolutionary link between the loss of phago-mixotrophy and specialization to a silicified photoautotrophic life stage early in diatom evolution after diverging from the Parmales lineage.


Assuntos
Diatomáceas , Estramenópilas , Diatomáceas/genética , Estramenópilas/genética , Fitoplâncton/metabolismo , Genoma , Dióxido de Silício
7.
Microbes Environ ; 38(1)2023.
Artigo em Inglês | MEDLINE | ID: mdl-36928278

RESUMO

We herein propose a fast and easy DNA and RNA co-extraction method for environmental microbial samples. It combines bead beating and phenol-chloroform phase separation followed by the separation and purification of DNA and RNA using the Qiagen AllPrep DNA/RNA mini kit. With a handling time of ~3 h, our method simultaneously extracted high-quality DNA (peak size >10-15| |kb) and RNA (RNA integrity number >6) from lake bacterioplankton filtered samples. The method is also applicable to low-biomass samples (expected DNA or RNA yield <50| |ng) and eukaryotic microbial samples, providing an easy option for more versatile eco-genomic applications.


Assuntos
DNA , RNA , RNA/genética , DNA/genética , Genômica , Fenol
8.
Mol Ecol ; 32(1): 110-123, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36221794

RESUMO

Haptophytes are one of the most ecologically successful phytoplankton groups in the modern ocean and tend to maintain balanced and stable communities across various environments. However, little is known about the mechanisms that enable community stability and ecological success. To reveal the community characteristics and interactions among haptophytes, we conducted comprehensive observations from the upstream to downstream regions of the Kuroshio Current. Haptophyte abundance and taxonomy were assessed using quantitative polymerase chain reaction and metabarcoding of 18S rRNA sequences, respectively. The haptophyte community structure changed abruptly at sites on the shelf-slope of the East China Sea, indicating the strong influence of shelf waters with high phytoplankton biomass on downstream communities. Correlation network analysis combined with the phylogeny suggested that haptophytes can coexist with their close relatives, possibly owing to their nutritional flexibility, thereby escaping from resource competition. Consistently, some noncalcifying haptophyte genera with high mixotrophic capacities such as Chrysochromulina constituted a major component of the co-occurrence network, whereas coccolithophores such as Emiliania/Gephyrocapsa were rarely observed. Our study findings suggest that noncalcifying haptophytes play crucial roles in community diversity and stability, and in sustaining the food web structure in the Kuroshio ecosystems.


Assuntos
Ecossistema , Haptófitas , Haptófitas/genética , Filogenia , RNA Ribossômico 18S/genética , Fitoplâncton/genética
9.
PLoS One ; 17(9): e0275295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36170286

RESUMO

BACKGROUND: Due to the coronavirus disease 2019 (COVID-19) pandemic, hygienic behaviors became a new norm since January 2020. The hygiene hypothesis predicts that an excessively hygienic environment may adversely affect human health. OBJECTIVE: We quantified the effect of COVID-19 on immunological parameters linked to the hygiene hypothesis. METHODS: We examined age-specific levels of total nonspecific immunoglobulin G (IgG) and IgE in individuals who visited Fukuoka Tokushukai Hospital between 2010 and 2021. Pre-COVID (2010-2019) and COVID (2020-2021) periods were compared. RESULTS: IgG levels steadily decreased throughout Pre-COVID period. IgG levels fell abruptly from the pre-COVID period to the COVID period in all age groups (P = 0.0271, < 0.3 years; P = 0.0096, 0.3-5 years; P = 0.0074, ≥ 5 years). The declines in IgG in < 0.3 years and that in ≥ 5 years accelerated during the COVID period. IgE levels were seasonal, but did not change noticeably from the pre-COVID to COVID period. IgG levels recorded for patients with Kawasaki disease (KD) (mean 709 mg/dL) were significantly lower than for matched control subjects (826 mg/dL) (P<0.0001). DISCUSSION: Hygienic behaviors during the COVID-19 outbreak decreased the chance of infection, which may explain the decreases in IgG levels in children and adults. Neonatal IgG declined, possibly because of the decrease in maternal IgG. CONCLUSION: Hygienic behaviors decreased the IgG levels in all age groups, from neonates to adults. This downturn in IgG may lead to vulnerability to infections as well as to KD.


Assuntos
COVID-19 , Síndrome de Linfonodos Mucocutâneos , Adulto , Anticorpos Antivirais , COVID-19/epidemiologia , Criança , Humanos , Imunoglobulina E , Imunoglobulina G , Lactente , Recém-Nascido , Síndrome de Linfonodos Mucocutâneos/epidemiologia , Pandemias
10.
mSystems ; 7(1): e0120321, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35089068

RESUMO

Phytoplankton diversity and community compositions vary across spaces and are fundamentally affected by several deterministic (e.g., environmental selection) and stochastic (e.g., ecological drift) processes. How this suite of different processes regulates the biogeography of phytoplankton remains to be comprehensively explored. Using high-throughput sequencing data and null model analysis, we revealed the ecological processes shaping the latitudinal community structure of three major phytoplankton groups (i.e., diatoms, Synechococcus, and haptophytes) across the Pacific Ocean (70°N, 170°W to 35°S, 170°W). At the basin scale, heterogeneous selection (selection under heterogeneous environmental conditions) dominated the assembly processes of all phytoplankton groups; however, its relative importance varied greatly at the climatic zonal scale, explaining the distinct latitudinal α- and ß-diversity among phytoplankton groups. Assembly processes in Synechococcus and haptophyte communities were mainly controlled by physical and nutrient factors, respectively. High temperature drove Synechococcus communities to be more deterministic with higher diversity, while haptophyte communities were less environmentally selected at low latitudes due to their wide niche breadth and mixotrophic lifestyle. Diatom communities were overwhelmingly dominated by the selection process but with low correlation of measured environmental factors to their community compositions. This could be attributed to the high growth rate of diatoms, as indicated by their lower site occupation frequency than predicted in the neutral community model. Our study showed that heterogeneous selection is the main force that shaped the biogeography of three key phytoplankton groups in the Pacific Ocean, with a latitudinal variation of relative importance due to the distinct traits among phytoplankton. IMPORTANCE Phytoplankton are diverse and abundant as primary producers in the ocean, with diversity and community compositions varying spatially. How fundamental processes (e.g., selection, dispersal, and drift) regulate their global biogeography remains to be comprehensively explored. In this study, we disentangled the ecological processes of three key phytoplankton groups (i.e., diatoms, Synechococcus, and haptophytes) along the same latitudinal gradients in the Pacific Ocean. Heterogeneous selection, by promoting species richness and reducing similarity between communities, was the dominant process shaping the communities of each phytoplankton group at the basin scale. However, its relative importance varied greatly among different phytoplankton groups in different climate zones, explaining the uneven latitudinal α- and ß-diversity. We also highlight the importance of identifying key factors mediating the relative importance of assembly processes in phytoplankton communities, which will enhance our understanding of their biogeography in the ocean and future patterns under climate changes.


Assuntos
Diatomáceas , Synechococcus , Fitoplâncton , Oceano Pacífico
11.
FEMS Microbiol Ecol ; 97(12)2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34962982

RESUMO

Coastal microbial communities are affected by seasonal environmental change, biotic interactions and fluctuating nutrient availability. We investigated the seasonal dynamics of communities of eukaryotes, a major group of double-stranded DNA viruses that infect eukaryotes (order Imitervirales; phylum Nucleocytoviricota), and prokaryotes in the Uranouchi Inlet, Kochi, Japan. We performed metabarcoding using ribosomal RNA genes and viral polB genes as markers in 43 seawater samples collected over 20 months. Eukaryotes, prokaryotes and Imitervirales communities characterized by the compositions of amplicon sequence variants (ASVs) showed synchronic seasonal cycles. However, the community dynamics showed intriguing differences in several aspects, such as the recovery rate after a year. We also showed that the differences in community dynamics were at least partially explained by differences in recurrence/persistence levels of individual ASVs among eukaryotes, prokaryotes and Imitervirales. Prokaryotic ASVs were the most persistent, followed by eukaryotic ASVs and Imitervirales ASVs, which were the least persistent. We argue that the differences in the specificity of interactions (virus-eukaryote vs prokaryote-eukaryote) as well as the niche breadth of community members were at the origin of the distinct community dynamics among eukaryotes, their viruses and prokaryotes.


Assuntos
Microbiota , Vírus , Ecossistema , Eucariotos/genética , Células Procarióticas , RNA Ribossômico 16S , Água do Mar
12.
Microbiol Spectr ; 9(2): e0006421, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34585975

RESUMO

Viruses of the phylum Nucleocytoviricota, or nucleo-cytoplasmic large DNA viruses (NCLDVs), undergo a cytoplasmic or nucleo-cytoplasmic cycle, the latter of which involves both nuclear and cytoplasmic compartments to proceed viral replication. Medusavirus, a recently isolated NCLDV, has a nucleo-cytoplasmic replication cycle in amoebas during which the host nuclear membrane apparently remains intact, a unique feature among amoeba-infecting NCLDVs. The medusavirus genome lacks most transcription genes but encodes a full set of histone genes. To investigate its infection strategy, we performed a time course RNA sequencing (RNA-seq) experiment. All viral genes were transcribed and classified into five temporal expression clusters. The immediate early genes (cluster 1, 42 genes) were mostly (83%) of unknown functions, frequently (95%) associated with a palindromic promoter-like motif, and often (45%) encoded putative nucleus-localized proteins. These results suggest massive reshaping of the host nuclear environment by viral proteins at an early stage of infection. Genes in other expression clusters (clusters 2 to 5) were assigned to various functional categories. The virally encoded core histone genes were in cluster 3, whereas the viral linker histone H1 gene was in cluster 1, suggesting they have distinct roles during the course of the virus infection. The transcriptional profile of the host Acanthamoeba castellanii genes was greatly altered postinfection. Several encystment-related host genes showed increased representation levels at 48 h postinfection, which is consistent with the previously reported amoeba encystment upon medusavirus infection. IMPORTANCE Medusavirus is an amoeba-infecting giant virus that was isolated from a hot spring in Japan. It belongs to the proposed family "Medusaviridae" in the phylum Nucleocytoviricota. Unlike other amoeba-infecting giant viruses, medusavirus initiates its DNA replication in the host nucleus without disrupting the nuclear membrane. Our RNA sequencing (RNA-seq) analysis of its infection course uncovered ordered viral gene expression profiles. We identified temporal expression clusters of viral genes and associated putative promoter motifs. The subcellular localization prediction showed a clear spatiotemporal correlation between gene expression timing and localization of the encoded proteins. Notably, the immediate early expression cluster was enriched in genes targeting the nucleus, suggesting the priority of remodeling the host intranuclear environment during infection. The transcriptional profile of amoeba genes was greatly altered postinfection.


Assuntos
Acanthamoeba castellanii/virologia , Núcleo Celular/virologia , Vírus de DNA/crescimento & desenvolvimento , Vírus de DNA/genética , Replicação Viral/genética , Sequência de Bases , Replicação do DNA/genética , Genoma Viral/genética , Histonas/genética , Família Multigênica/genética , RNA-Seq , Análise de Sequência de RNA , Transcriptoma/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
13.
Front Microbiol ; 12: 683294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163457

RESUMO

Nucleocytoplasmic large DNA viruses (NCLDVs) infect diverse eukaryotes and form a group of viruses with capsids encapsulating large genomes. Recent studies are increasingly revealing a spectacular array of functions encoded in their genomes, including genes for energy metabolisms, nutrient uptake, as well as cytoskeleton. Here, we report the discovery of genes homologous to myosins, the major eukaryotic motor proteins previously unrecognized in the virosphere, in environmental genomes of NCLDVs from the surface of the oceans. Phylogenetic analyses indicate that most viral myosins (named "virmyosins") belong to the Imitervirales order, except for one belonging to the Phycodnaviridae family. On the one hand, the phylogenetic positions of virmyosin-encoding Imitervirales are scattered within the Imitervirales. On the other hand, Imitervirales virmyosin genes form a monophyletic group in the phylogeny of diverse myosin sequences. Furthermore, phylogenetic trends for the virmyosin genes and viruses containing them were incongruent. Based on these results, we argue that multiple transfers of myosin homologs have occurred not only from eukaryotes to viruses but also between viruses, supposedly during co-infections of the same host. Like other viruses that use host motor proteins for their intracellular transport or motility, these viruses may use the virally encoded myosins for the intracellular trafficking of giant viral particles.

14.
Environ Microbiol ; 23(8): 4246-4259, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34046993

RESUMO

Despite the increasing reports of non-cyanobacterial diazotrophs (NCDs) in pelagic waters, only one NCD (GammaA) has been relatively well described, whose genome and physiology are still unclear. Here we present a comprehensive analysis of the biogeography and ecophysiology of a widely distributed NCD, Gamma4. Gamma4 was the most abundant Gammaproteobacterial NCD along transects across the subtropical North Pacific. Using quantitative PCR, Gamma4 was detectable throughout the surface waters of North Pacific (7°N-55°N, 138°E-80°W), whereas GammaA was detected at <2/3 of the stations. Gamma4 was abundant during autumn-winter and positively correlated with chlorophyll a, while GammaA thrived during spring-summer and was positively correlated with temperature. Environmental clones affiliated with Gamma4 were widely detected in pelagic waters, oxygen minimum zones and even dinoflagellate microbiomes. By analysing the metabolic potential of a genome of Gamma4 reconstructed from the Tara Oceans dataset, we suggest that Gamma4 is a versatile heterotrophic NCD equipped with multiple strategies in scavenging phosphate (and iron) and for respiratory protection of nitrogenase. The transcription of nitrogenase genes is putatively regulated by Fnr-NifL-NifA and GlnD-GlnK systems that respond to intracellular oxygen and glutamate concentration. These results provide important implications for the potential life strategies of pelagic NCDs.


Assuntos
Cianobactérias , Fixação de Nitrogênio , Clorofila A , Fixação de Nitrogênio/genética , Oceano Pacífico , Filogenia , Água do Mar
15.
mSphere ; 6(2)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883262

RESUMO

Nucleocytoplasmic large DNA viruses (NCLDVs) are highly diverse and abundant in marine environments. However, the knowledge of their hosts is limited because only a few NCLDVs have been isolated so far. Taking advantage of the recent large-scale marine metagenomics census, in silico host prediction approaches are expected to fill the gap and further expand our knowledge of virus-host relationships for unknown NCLDVs. In this study, we built co-occurrence networks of NCLDVs and eukaryotic taxa to predict virus-host interactions using Tara Oceans sequencing data. Using the positive likelihood ratio to assess the performance of host prediction for NCLDVs, we benchmarked several co-occurrence approaches and demonstrated an increase in the odds ratio of predicting true positive relationships 4-fold compared to random host predictions. To further refine host predictions from high-dimensional co-occurrence networks, we developed a phylogeny-informed filtering method, Taxon Interaction Mapper, and showed it further improved the prediction performance by 12-fold. Finally, we inferred virophage-NCLDV networks to corroborate that co-occurrence approaches are effective for predicting interacting partners of NCLDVs in marine environments.IMPORTANCE NCLDVs can infect a wide range of eukaryotes, although their life cycle is less dependent on hosts compared to other viruses. However, our understanding of NCLDV-host systems is highly limited because few of these viruses have been isolated so far. Co-occurrence information has been assumed to be useful to predict virus-host interactions. In this study, we quantitatively show the effectiveness of co-occurrence inference for NCLDV host prediction. We also improve the prediction performance with a phylogeny-guided method, which leads to a concise list of candidate host lineages for three NCLDV families. Our results underpin the usage of co-occurrence approaches for the metagenomic exploration of the ecology of this diverse group of viruses.


Assuntos
Vírus de DNA/classificação , Vírus de DNA/genética , Genoma Viral , Interações entre Hospedeiro e Microrganismos/genética , Filogenia , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Metagenômica/estatística & dados numéricos
16.
Arch Virol ; 166(2): 651-654, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33387023

RESUMO

A novel lytic bacteriophage, Ralstonia phage RP13, was isolated from tomato fields in Pang Nga, Thailand. Electron microscopic observation showed it to have the features of a myovirus with a novel triangulation number (T = 21, dextro). The RP13 DNA appeared to be heavily modified. By applying RNA sequencing and RNA-sequence-mediated DNA sequencing, the whole genome of RP31 was determined to be 170,942 bp in length with a mean G+C content of 39.2%. A total of 277 ORFs were identified as structural, functional, or hypothetical genes in addition to four tRNA genes. Phylogenetic analysis suggested that RP13 is not closely related to any other known phages. Thus, we concluded that the RP13 is a novel phage infecting R. solanacearum strains and will be a useful biocontrol agent against bacterial wilt disease.


Assuntos
Bacteriófagos/genética , Genoma Viral/genética , Doenças das Plantas/microbiologia , Ralstonia solanacearum/virologia , Composição de Bases/genética , Genômica/métodos , Especificidade de Hospedeiro/genética , Solanum lycopersicum/microbiologia , Fases de Leitura Aberta/genética , Filogenia , RNA de Transferência/genética , Tailândia
17.
iScience ; 24(1): 102002, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33490910

RESUMO

The biological carbon pump, in which carbon fixed by photosynthesis is exported to the deep ocean through sinking, is a major process in Earth's carbon cycle. The proportion of primary production that is exported is termed the carbon export efficiency (CEE). Based on in-lab or regional scale observations, viruses were previously suggested to affect the CEE (i.e., viral "shunt" and "shuttle"). In this study, we tested associations between viral community composition and CEE measured at a global scale. A regression model based on relative abundance of viral marker genes explained 67% of the variation in CEE. Viruses with high importance in the model were predicted to infect ecologically important hosts. These results are consistent with the view that the viral shunt and shuttle functions at a large scale and further imply that viruses likely act in this process in a way dependent on their hosts and ecosystem dynamics.

18.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414320

RESUMO

"Medusaviridae" is a proposed family of large double-stranded DNA (dsDNA) viruses so far represented by a sole virus isolated from a hot spring. In the present study, we report the isolation and genome sequencing of a second member of this family, medusavirus stheno, discovered from a freshwater sample with an Acanthamoeba castellanii coculture.

19.
Microorganisms ; 8(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121006

RESUMO

The aim of this study was to elucidate the ecological structure of the human gut temperate bacteriophage community and its role in inflammatory bowel disease (IBD). Temperate bacteriophages make up a large proportion of the human gut microbiota and are likely to play a role in IBD pathogenesis. However, many of these bacteriophages await characterization in reference databases. Therefore, we conducted a large-scale reconstruction of temperate bacteriophage and bacterial genomes from the whole-metagenome sequence data generated by the IBD Multi'omics Database project. By associating phages with their hosts via genome comparisons, we found that temperate bacteriophages infect a phylogenetically wide range of bacteria. The majority of variance in bacteriophage community composition was explained by variation among individuals, but differences in the abundance of temperate bacteriophages were identified between IBD and non-IBD patients. Of note, in active ulcerative colitis patients, temperate bacteriophages infecting Bacteroides uniformis and Bacteroides thetaiotaomicron-two species experimentally proven to be beneficial to gut homeostasis-were over-represented, whereas their hosts were under-represented in comparison with non-IBD patients. Supporting the mounting evidence that gut viral community plays a vital role in IBD, our results show potential association between temperate bacteriophages and IBD pathogenesis.

20.
Nat Ecol Evol ; 4(12): 1639-1649, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32895519

RESUMO

Nucleocytoplasmic large DNA viruses (NCLDVs) are ubiquitous in marine environments and infect diverse eukaryotes. However, little is known about their biogeography and ecology in the ocean. By leveraging the Tara Oceans pole-to-pole metagenomic data set, we investigated the distribution of NCLDVs across size fractions, depths and biomes, as well as their associations with eukaryotic communities. Our analyses reveal a heterogeneous distribution of NCLDVs across oceans, and a higher proportion of unique NCLDVs in the polar biomes. The community structures of NCLDV families correlate with specific eukaryotic lineages, including many photosynthetic groups. NCLDV communities are generally distinct between surface and mesopelagic zones, but at some locations they exhibit a high similarity between the two depths. This vertical similarity correlates to surface phytoplankton biomass but not to physical mixing processes, which suggests a potential role of vertical transport in structuring mesopelagic NCLDV communities. These results underscore the importance of the interactions between NCLDVs and eukaryotes in biogeochemical processes in the ocean.


Assuntos
Vírus Gigantes , Vírus de DNA , Eucariotos , Vírus Gigantes/genética , Humanos , Oceanos e Mares , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...