Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37703190

RESUMO

Forensic laboratories need quick and simple technology to improve turnaround times, while delivering reliable results. The goal of this study is first to create a simplified workflow to meet new Academy Standards Board requirements for urine testing in drug-facilitated crime investigations and, second, to create "ready-to-go", "hands-free" testing technology to further streamline analytical procedures. A first of its kind, the ToxBox forensic test kit is used to validate a single analytical procedure for opioids, benzodiazepines, cannabinoids, antidepressants, and several other drug classes. Method performance indicators follow accreditation requirements and include accuracy, precision, measurement uncertainty, calibration models, reportable range, sensitivity, specificity, carryover, interference, ion suppression/enhancement, and analyte stability. "Hands-free" testing platforms require the use of new suspended-state technology to stabilize NIST-traceable standards premanufactured at precise concentrations in the presence of sample preparation reagents. By suspending all reaction components in the solid state, with air gaps between the phases, reference standards and process controls are built in a "ready-to-go" format and stabilized for long-term storage in the presence of a sample matrix, ß-d-glucuronidase, and enzymatic buffers. "Hands-free" test kits are removed from storage, incubated at either ambient temperature or 60 °C, and assayed using validated methods. This is the first example of how complex forensic testing workflows can be streamlined with new "hands-free" testing strategies to meet analytical challenges associated with quantitative and confirmatory analyses.

2.
Anal Chem ; 86(3): 1760-6, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24354295

RESUMO

Opioid abuse involving emerging opioid compounds is a growing public health problem, which was highlighted recently by cases of human morbidity and mortality linked to acetyl fentanyl abuse. Unfortunately, the lack of information available on the toxicology and metabolism of acetyl fentanyl precludes its detection in human samples. The following study was conducted to test a new analytical procedure for the simultaneous quantification of acetyl fentanyl and its predicted metabolite, acetyl norfentanyl, in human urine. Metabolic reference standards and deuterium-labeled internal standards were synthesized for use in an assay that coupled solid-phase extraction (SPE) with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The accuracy (% Relative Error <5%) and inter- and intrarun precision (%CV <20%) of this new method resulted in low levels of quantification (∼1 ng/mL). Similar results were obtained using liquid chromatography columns manufactured with phenyl-hexyl and biphenyl stationary phases (r(2) > 0.98). Preliminary human liver microsomal and in vivo rodent studies demonstrated that acetyl fentanyl is metabolized by cytochrome P450s to acetyl norfentanyl. Urine samples from rats treated with a toxic dose of acetyl fentanyl contained high concentrations of acetyl fentanyl and acetyl norfentanyl. Further toxicokinetic studies are required to fully elucidate the metabolic pathways responsible for acetyl fentanyl detoxification and excretion.


Assuntos
Analgésicos Opioides/urina , Fentanila/análogos & derivados , Urinálise/métodos , Analgésicos Opioides/metabolismo , Animais , Cromatografia Líquida , Sistema Enzimático do Citocromo P-450/metabolismo , Fentanila/metabolismo , Fentanila/urina , Humanos , Masculino , Ratos , Espectrometria de Massas em Tandem
3.
Forensic Sci Int ; 233(1-3): 416-22, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24314548

RESUMO

New designer drugs such as K2, Spice, and "bath salts" present a formidable challenge for law enforcement and public health officials. The following report summarizes a three-year study of 1320 law enforcement cases involving over 3000 products described as vegetable material, powders, capsules, tablets, blotter paper, or drug paraphernalia. All items were seized in Arkansas from January 2010 through December 2012 and submitted to the Arkansas State Crime Laboratory for analysis. The geographical distribution of these seizures co-localized in areas with higher population, colleges, and universities. Validated forensic testing procedures confirmed the presence of 26 synthetic cannabinoids, 12 designer stimulants, and 5 hallucinogenic-like drugs regulated by the Synthetic Drug Prevention Act of 2012 and other state statutes. Analysis of paraphernalia suggests that these drugs are commonly used concomitantly with other drugs of abuse including marijuana, MDMA, and methamphetamine. Exact designer drug compositions were unpredictable and often formulated with multiple agents, but overall, the synthetic cannabinoids were significantly more prevalent than all the other designer drugs detected. The synthetic cannabinoids JWH-018, AM2201, JWH-122, JWH-210, and XLR11 were most commonly detected in green vegetable material and powder products. The designer stimulants methylenedioxypyrovalerone (MDPV), 3,4-methylenedioxy-N-methylcathinone (methylone), and α-methylamino-valerophenone (pentedrone) were commonly detected in tablets, capsules, and powders. Hallucinogenic drugs were rarely detected, but generally found on blotter paper products. Emerging designer drug products remain a significant problem and continued surveillance is needed to protect public health.


Assuntos
Drogas Desenhadas/química , Benzodioxóis/química , Canabinoides/química , Cápsulas , Estimulantes do Sistema Nervoso Central/química , Dronabinol/química , Alucinógenos/química , Humanos , Indóis/química , Metanfetamina/análogos & derivados , Metanfetamina/química , Metilaminas/química , Estrutura Molecular , Naftalenos/química , Papel , Pentanonas/química , Pós , Pirrolidinas/química , Transtornos Relacionados ao Uso de Substâncias , Comprimidos , Catinona Sintética
4.
Anal Chem ; 85(19): 9390-9, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23987522

RESUMO

Designer synthetic cannabinoids like JWH-018 and AM2201 have unique clinical toxicity. Cytochrome-P450-mediated metabolism of each leads to the generation of pharmacologically active (ω)- and (ω-1)-monohydroxyl metabolites that retain high affinity for cannabinoid type-1 receptors, exhibit Δ(9)-THC-like effects in rodents, and are conjugated with glucuronic acid prior to excretion in human urine. Previous studies have not measured the contribution of the specific (ω-1)-monohydroxyl enantiomers in human metabolism and toxicity. This study uses a chiral liquid chromatography-tandem mass spectroscopy approach (LC-MS/MS) to quantify each specific enantiomer and other nonchiral, human metabolites of JWH-018 and AM2201 in human urine. The accuracy (average % RE = 18.6) and reproducibility (average CV = 15.8%) of the method resulted in low-level quantification (average LLQ = 0.99 ng/mL) of each metabolite. Comparisons with a previously validated nonchiral method showed strong correlation between the two approaches (average r(2) = 0.89). Pilot data from human urine samples demonstrate enantiospecific excretion patterns. The (S)-isomer of the JWH-018-(ω-1)-monohydroxyl metabolite was predominantly excreted (>87%) in human urine as the glucuronic acid conjugate, whereas the relative abundance of the corresponding AM2201-(ω-1)-metabolite was low (<5%) and did not demonstrate enantiospecificity (approximate 50:50 ratio of each enantiomer). The new chiral method provides a comprehensive, targeted metabolomic approach for studying the human metabolism of JWH-018 and AM2201. Preliminary evaluations of specific enantiomeric contributions support the use of this approach in future studies designed to understand the pharmacokinetic properties of JWH-018 and/or AM2201.


Assuntos
Indóis/metabolismo , Metabolômica , Naftalenos/metabolismo , Cromatografia Líquida , Humanos , Indóis/farmacocinética , Indóis/urina , Estrutura Molecular , Naftalenos/farmacocinética , Naftalenos/urina , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Distribuição Tecidual
5.
Drug Metab Dispos ; 40(11): 2174-84, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22904561

RESUMO

Abuse of synthetic cannabinoids (SCs), such as [1-naphthalenyl-(1-pentyl-1H-indol-3-yl]-methanone (JWH-018) and [1-(5-fluoropentyl)-1H-indol-3-yl]-1-naphthalenyl-methanone (AM2201), is increasing at an alarming rate. Although very little is known about the metabolism and toxicology of these popular designer drugs, mass spectrometric analysis of human urine specimens after JWH-018 and AM2201 exposure identified monohydroxylated and carboxylated derivatives as major metabolites. The present study extends these initial findings by testing the hypothesis that JWH-018 and its fluorinated counterpart AM2201 are subject to cytochrome P450 (P450)-mediated oxidation, forming potent hydroxylated metabolites that retain significant affinity and activity at the cannabinoid 1 (CB(1)) receptor. Kinetic analysis using human liver microsomes and recombinant human protein identified CYP2C9 and CYP1A2 as major P450s involved in the oxidation of the JWH-018 and AM2201. In vitro metabolite formation mirrored human urinary metabolic profiles, and each of the primary enzymes exhibited high affinity (K(m) = 0.81-7.3 µM) and low to high reaction velocities (V(max) = 0.0053-2.7 nmol of product · min(-1) · nmol protein(-1)). The contribution of CYP2C19, 2D6, 2E1, and 3A4 in the hepatic metabolic clearance of these synthetic cannabinoids was minimal (f(m) = <0.2). In vitro studies demonstrated that the primary metabolites produced in humans display high affinity and intrinsic activity at the CB(1) receptor, which was attenuated by the CB(1) receptor antagonist (6aR,10aR)-3-(1-methanesulfonylamino-4-hexyn-6-yl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran (O-2050). Results from the present study provide critical, missing data related to potential toxicological properties of "K2" parent compounds and their human metabolites, including mechanism(s) of action at cannabinoid receptors.


Assuntos
Canabinoides/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Drogas Ilícitas/farmacocinética , Receptor CB1 de Canabinoide/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Encéfalo/metabolismo , Canabinoides/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C9 , Dronabinol/análogos & derivados , Dronabinol/farmacologia , Humanos , Hidroxilação , Drogas Ilícitas/metabolismo , Indóis/metabolismo , Cinética , Ligantes , Fígado/metabolismo , Espectrometria de Massas/métodos , Camundongos , Microssomos Hepáticos/metabolismo , Naftalenos/metabolismo , Oxirredução , Ligação Proteica , Piranos/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores
6.
Chem Res Toxicol ; 25(4): 825-7, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22404317

RESUMO

Recently, hydroxylated metabolites of JWH-018, a synthetic cannabinoid found in many K2/Spice preparations, have been shown to retain affinity and activity for cannabinoid type 1 receptors (CB1Rs). The activity of glucuronidated metabolites of JWH-018 is not known; hence, this study investigated the affinity and activity of a major metabolite, JWH-018-N-(5-hydroxypentyl) ß-D-glucuronide (018-gluc), for CB1Rs. The 018-gluc binds CB1Rs (K(i) = 922 nM), has no effect on G-protein activity, but antagonizes JWH-018 activity at CB1Rs. The data suggests that hydroxylation by cytochrome P450s and subsequent glucuronidation by UDP-glucuronosyltransferases produces a metabolite, 018-gluc, which possesses antagonistic activity at CB1Rs.


Assuntos
Indóis/metabolismo , Naftalenos/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronídeos/química , Glucuronosiltransferase/metabolismo , Humanos , Hidroxilação , Indóis/química , Indóis/toxicidade , Naftalenos/química , Naftalenos/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptor CB1 de Canabinoide/metabolismo
7.
Anal Chem ; 83(16): 6381-8, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21740038

RESUMO

The aminoalkylindole agonists JWH-018 and JWH-073 are contained in "K2/SPICE" products sold as "legal marijuana". Previous human metabolic studies have identified (ω)-hydroxyl and (ω)-carboxyl metabolites as biomarkers that are indicative of product use. However, other primary metabolites exhibiting similar chromatographic properties and mass spectra are also excreted in human urine. Analytical standards were used in this study to identify new primary metabolites as (ω-1)-hydroxyl derivatives of JWH-018 and JWH-073. The liquid chromatography tandem mass spectrometry (LC-MS/MS) procedure, coupled with an automated solid-phase extraction procedure incorporating deuterium-labeled internal standards, provides rapid resolution of the (ω)- and (ω-1) metabolites with adequate sensitivity, precision, and accuracy for trace analysis in human urine. Results from four urine specimens collected after individuals reportedly self-administered either JWH-018 or a mixture of JWH-018 and JWH-073 showed the following: (1) all tested metabolites were excreted in high concentrations, (2) (ω)- and (ω-1)-hydroxyl metabolites were exclusively excreted as glucuronic acid conjugates, and (3) ∼5%-80% of the (ω)-carboxyl metabolites was excreted as glucuronic acid conjugates. This is the first report to identify and quantify (ω-1)-hydroxyl metabolites of JWH-018 and JWH-073 and the first to incorporate automated extraction procedures using deuterium-labeled internal standards. Full clinical validation awaits further testing.


Assuntos
Cromatografia Líquida/métodos , Drogas Ilícitas/urina , Indóis/urina , Naftalenos/urina , Extração em Fase Sólida/métodos , Detecção do Abuso de Substâncias/métodos , Espectrometria de Massas em Tandem/métodos , Deutério/química , Humanos , Padrões de Referência , Sensibilidade e Especificidade , Coloração e Rotulagem
8.
Anal Chem ; 83(11): 4228-36, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21506519

RESUMO

"K2/SPICE" products are commonly laced with aminoalkylindole synthetic cannabinoids (i.e., JWH-018 and JWH-073) and are touted as "legal" marijuana substitutes. Here we validate a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for measuring urinary concentrations of JWH-018, JWH-073, and several potential metabolites of each. The analytical procedure has high capacity for sample throughput and does not require solid phase or liquid extraction. Evaluation of human urine specimens collected after the subjects reportedly administered JWH-018 or a mixture of JWH-018 and JWH-073 provides preliminary evidence of clinical utility. Two subjects that consumed JWH-018 primarily excreted glucuronidated conjugates of 5-(3-(1-naphthoyl)-1H-indol-1-yl)-pentanoic acid (>30 ng/mL) and (1-(5-hydroxypentyl)-1H-indol-3-yl)(naphthalene-1-yl)-methanone (>50 ng/mL). Interestingly, oxidized metabolites of both JWH-018 and JWH-073 were detected in these specimens, suggesting either metabolic demethylation of JWH-018 to JWH-073 or a nonreported, previous JWH-073 exposure. Metabolic profiles generated from a subject who consumed a mixture of JWH-018 and JWH-073 were similar to profiles generated from subjects who presumably consumed JWH-018 exclusively. Oxidized metabolites of JWH-018 and JWH-073 were of the same pattern, but JWH-018 metabolites were excreted at lower concentrations. These results begin clinically validating the LC-MS/MS assay for detecting and quantifying aminoalkylindole metabolites. Full validation awaits further testing.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Indóis/metabolismo , Naftalenos/metabolismo , Espectrometria de Massas em Tandem/métodos , Glucuronidase/metabolismo , Humanos , Indóis/urina , Naftalenos/urina , Oxirredução
9.
J Biol Chem ; 284(37): 25087-96, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19605355

RESUMO

Mycobacterium tuberculosis survival in cells requires mycobactin siderophores. Recently, the search for lipid antigens presented by the CD1a antigen-presenting protein led to the discovery of a mycobactin-like compound, dideoxymycobactin (DDM). Here we synthesize DDMs using solution phase and solid phase peptide synthesis chemistry. Comparison of synthetic standards to natural mycobacterial mycobactins by nuclear magnetic resonance and mass spectrometry allowed identification of an unexpected alpha-methyl serine unit in natural DDM. This finding further distinguishes these pre-siderophores as foreign compounds distinct from conventional peptides, and we provide evidence that this chemical variation influences the T cell response. One synthetic DDM recapitulated natural structures and potently stimulated T cells, making it suitable for patient studies of CD1a in infectious disease. DDM analogs differing in the stereochemistry of their butyrate or oxazoline moieties were not recognized by human T cells. Therefore, we conclude that T cells show precise specificity for both arms of the peptide, which are predicted to lie at the CD1a-T cell receptor interface.


Assuntos
Antígenos CD1/química , Lipopeptídeos/química , Oxazóis/química , Linfócitos T/metabolismo , Butiratos/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Hidroxiácidos , Leucócitos Mononucleares/microbiologia , Lipídeos/química , Lisina/química , Modelos Químicos , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo , Estereoisomerismo , Linfócitos T/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...