Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38927084

RESUMO

Clickable nucleosides, most often 5-ethynyl-2'-deoxyuridine (EtU), are widely used in studies of DNA replication in living cells and in DNA functionalization for bionanotechology applications. Although clickable dNTPs are easily incorporated by DNA polymerases into the growing chain, afterwards they might become targets for DNA repair systems or interfere with faithful nucleotide insertion. Little is known about the possibility and mechanisms of these post-synthetic events. Here, we investigated the repair and (mis)coding properties of EtU and two bulkier clickable pyrimidine nucleosides, 5-(octa-1,7-diyn-1-yl)-U (C8-AlkU) and 5-(octa-1,7-diyn-1-yl)-C (C8-AlkC). In vitro, EtU and C8-AlkU, but not C8-AlkC, were excised by SMUG1 and MBD4, two DNA glycosylases from the base excision repair pathway. However, when placed into a plasmid encoding a fluorescent reporter inactivated by repair in human cells, EtU and C8-AlkU persisted for much longer than uracil or its poorly repairable phosphorothioate-flanked derivative. DNA polymerases from four different structural families preferentially bypassed EtU, C8-AlkU and C8-AlkC in an error-free manner, but a certain degree of misincorporation was also observed, especially evident for DNA polymerase ß. Overall, clickable pyrimidine nucleotides could undergo repair and be a source of mutations, but the frequency of such events in the cell is unlikely to be considerable.


Assuntos
Química Click , Reparo do DNA , Nucleotídeos de Pirimidina , Humanos , Nucleotídeos de Pirimidina/química , Nucleotídeos de Pirimidina/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiuridina/análogos & derivados , Desoxiuridina/química , Desoxiuridina/metabolismo , DNA/metabolismo , DNA/química , DNA/genética , Replicação do DNA , Uracila-DNA Glicosidase/metabolismo
2.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892193

RESUMO

The DNA building blocks 2'-deoxynucleotides are enantiomeric, with their natural ß-D-configuration dictated by the sugar moiety. Their synthetic ß-L-enantiomers (ßLdNs) can be used to obtain L-DNA, which, when fully substituted, is resistant to nucleases and is finding use in many biosensing and nanotechnology applications. However, much less is known about the enzymatic recognition and processing of individual ßLdNs embedded in D-DNA. Here, we address the template properties of ßLdNs for several DNA polymerases and the ability of base excision repair enzymes to remove these modifications from DNA. The Klenow fragment was fully blocked by ßLdNs, whereas DNA polymerase κ bypassed them in an error-free manner. Phage RB69 DNA polymerase and DNA polymerase ß treated ßLdNs as non-instructive but the latter enzyme shifted towards error-free incorporation on a gapped DNA substrate. DNA glycosylases and AP endonucleases did not process ßLdNs. DNA glycosylases sensitive to the base opposite their cognate lesions also did not recognize ßLdNs as a correct pairing partner. Nevertheless, when placed in a reporter plasmid, pyrimidine ßLdNs were resistant to repair in human cells, whereas purine ßLdNs appear to be partly repaired. Overall, ßLdNs are unique modifications that are mostly non-instructive but have dual non-instructive/instructive properties in special cases.


Assuntos
Dano ao DNA , Reparo do DNA , Humanos , DNA/química , DNA/metabolismo , Nucleotídeos/química , Nucleotídeos/metabolismo , Conformação de Ácido Nucleico , DNA Polimerase beta/metabolismo , DNA Polimerase beta/química , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , Estereoisomerismo
3.
Molecules ; 29(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398600

RESUMO

Aptamers are currently being investigated for their potential to improve virotherapy. They offer several advantages, including the ability to prevent the aggregation of viral particles, enhance target specificity, and protect against the neutralizing effects of antibodies. The purpose of this study was to comprehensively investigate an aptamer capable of enhancing virotherapy. This involved characterizing the previously selected aptamer for vaccinia virus (VACV), evaluating the aggregation and molecular interaction of the optimized aptamers with the recombinant oncolytic virus VV-GMCSF-Lact, and estimating their immunoshielding properties in the presence of human blood serum. We chose one optimized aptamer, NV14t_56, with the highest affinity to the virus from the pool of several truncated aptamers and built its 3D model. The NV14t_56 remained stable in human blood serum for 1 h and bound to VV-GMCSF-Lact in the micromolar range (Kd ≈ 0.35 µM). Based on dynamic light scattering data, it has been demonstrated that aptamers surround viral particles and inhibit aggregate formation. In the presence of serum, the hydrodynamic diameter (by intensity) of the aptamer-virus complex did not change. Microscale thermophoresis (MST) experiments showed that NV14t_56 binds with virus (EC50 = 1.487 × 109 PFU/mL). The analysis of the amplitudes of MST curves reveals that the components of the serum bind to the aptamer-virus complex without disrupting it. In vitro experiments demonstrated the efficacy of VV-GMCSF-Lact in conjunction with the aptamer when exposed to human blood serum in the absence of neutralizing antibodies (Nabs). Thus, NV14t_56 has the ability to inhibit virus aggregation, allowing VV-GMCSF-Lact to maintain its effectiveness throughout the storage period and subsequent use. When employing aptamers as protective agents for oncolytic viruses, the presence of neutralizing antibodies should be taken into account.


Assuntos
Aptâmeros de Nucleotídeos , Vírus Oncolíticos , Humanos , Vaccinia virus/genética , Aptâmeros de Nucleotídeos/metabolismo , Anticorpos Neutralizantes
4.
DNA Repair (Amst) ; 133: 103605, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042029

RESUMO

Oxidative damage is a major source of genomic instability in all organisms with the aerobic metabolism. 8-Oxoguanine (8-oxoG), an abundant oxidized purine, is mutagenic and must be controlled by a dedicated DNA repair system (GO system) that prevents G:C→T:A transversions through an easily formed 8-oxoG:A mispair. In some forms, the GO system is present in nearly all cellular organisms. However, recent studies uncovered many instances of viruses possessing non-canonical nucleotides in their genomes. The features of genome damage and maintenance in such cases of alternative genetic chemistry remain barely explored. In particular, 2,6-diaminopurine (Z nucleotide) completely substitutes for A in the genomes of some bacteriophages, which have evolved pathways for dZTP synthesis and specialized polymerases that prefer dZTP over dATP. Here we address the ability of the GO system enzymes to cope with oxidative DNA damage in the presence of Z in DNA. DNA polymerases of two different structural families (Klenow fragment and RB69 polymerase) were able to incorporate dZMP opposite to 8-oxoG in the template, as well as 8-oxodGMP opposite to Z in the template. Fpg, a 8-oxoguanine-DNA glycosylase that discriminates against 8-oxoG:A mispairs, also did not remove 8-oxoG from 8-oxoG:Z mispairs. However, MutY, a DNA glycosylase that excises A from pairs with 8-oxoG, had a significantly lower activity on Z:8-oxoG mispairs. Similar preferences were observed for Fpg and MutY from different bacterial species (Escherichia coli, Staphylococcus aureus and Lactococcus lactis). Overall, the relaxed control of 8-oxoG in the presence of the Z nucleotide may be a source of additional mutagenesis in the genomes of bacteriophages or bacteria that have survived the viral invasion.


Assuntos
DNA Glicosilases , Nucleotídeos , Humanos , Nucleotídeos/metabolismo , Reparo do DNA , DNA Glicosilases/metabolismo , Estresse Oxidativo , Dano ao DNA , Escherichia coli/metabolismo , Genoma Viral
5.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834194

RESUMO

Base excision DNA repair (BER) is a key pathway safeguarding the genome of all living organisms from damage caused by both intrinsic and environmental factors. Most present knowledge about BER comes from studies of human cells, E. coli, and yeast. Plants may be under an even heavier DNA damage threat from abiotic stress, reactive oxygen species leaking from the photosynthetic system, and reactive secondary metabolites. In general, BER in plant species is similar to that in humans and model organisms, but several important details are specific to plants. Here, we review the current state of knowledge about BER in plants, with special attention paid to its unique features, such as the existence of active epigenetic demethylation based on the BER machinery, the unexplained diversity of alkylation damage repair enzymes, and the differences in the processing of abasic sites that appear either spontaneously or are generated as BER intermediates. Understanding the biochemistry of plant DNA repair, especially in species other than the Arabidopsis model, is important for future efforts to develop new crop varieties.


Assuntos
Arabidopsis , Humanos , Arabidopsis/metabolismo , Escherichia coli/metabolismo , Reparo do DNA , Dano ao DNA , DNA de Plantas/genética , DNA de Plantas/metabolismo
6.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298065

RESUMO

The protein encoded by the vaccinia virus D4R gene has base excision repair uracil-DNA N-glycosylase (vvUNG) activity and also acts as a processivity factor in the viral replication complex. The use of a protein unlike PolN/PCNA sliding clamps is a unique feature of orthopoxviral replication, providing an attractive target for drug design. However, the intrinsic processivity of vvUNG has never been estimated, leaving open the question whether it is sufficient to impart processivity to the viral polymerase. Here, we use the correlated cleavage assay to characterize the translocation of vvUNG along DNA between two uracil residues. The salt dependence of the correlated cleavage, together with the similar affinity of vvUNG for damaged and undamaged DNA, support the one-dimensional diffusion mechanism of lesion search. Unlike short gaps, covalent adducts partly block vvUNG translocation. Kinetic experiments show that once a lesion is found it is excised with a probability ~0.76. Varying the distance between two uracils, we use a random walk model to estimate the mean number of steps per association with DNA at ~4200, which is consistent with vvUNG playing a role as a processivity factor. Finally, we show that inhibitors carrying a tetrahydro-2,4,6-trioxopyrimidinylidene moiety can suppress the processivity of vvUNG.


Assuntos
Uracila-DNA Glicosidase , Vaccinia virus , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo , Vaccinia virus/genética , DNA/metabolismo , Replicação Viral , Reparo do DNA , Uracila/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Replicação do DNA
7.
J Am Chem Soc ; 145(10): 5613-5617, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36867834

RESUMO

8-Oxo-7,8-dihydroguanine (oxoG), an abundant DNA lesion, can mispair with adenine and induce mutations. To prevent this, cells possess DNA repair glycosylases that excise either oxoG from oxoG:C pairs (bacterial Fpg, human OGG1) or A from oxoG:A mispairs (bacterial MutY, human MUTYH). Early lesion recognition steps remain murky and may include enforced base pair opening or capture of a spontaneously opened pair. We adapted the CLEANEX-PM NMR protocol to detect DNA imino proton exchange and analyzed the dynamics of oxoG:C, oxoG:A, and their undamaged counterparts in nucleotide contexts with different stacking energy. Even in a poorly stacking context, the oxoG:C pair did not open easier than G:C, arguing against extrahelical base capture by Fpg/OGG1. On the contrary, oxoG opposite A significantly populated the extrahelical state, which may assist recognition by MutY/MUTYH.


Assuntos
Guanina , Nucleotídeos , Humanos , Pareamento de Bases , Guanina/química , DNA/química , Reparo do DNA
8.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203235

RESUMO

Apurinic/apyrimidinic (AP) sites are abundant DNA lesions generated both by spontaneous base loss and as intermediates of base excision DNA repair. In human cells, they are normally repaired by an essential AP endonuclease, APE1, encoded by the APEX1 gene. Other enzymes can cleave AP sites by either hydrolysis or ß-elimination in vitro, but it is not clear whether they provide the second line of defense in living cells. Here, we studied AP site repairs in APEX1 knockout derivatives of HEK293FT cells using a reporter system based on transcriptional mutagenesis in the enhanced green fluorescent protein gene. Despite an apparent lack of AP site-processing activity in vitro, the cells efficiently repaired the tetrahydrofuran AP site analog resistant to ß-elimination. This ability persisted even when the second AP endonuclease homolog, APE2, was also knocked out. Moreover, APEX1 null cells were able to repair uracil, a DNA lesion that is removed via the formation of an AP site. If AP site hydrolysis was chemically blocked, the uracil repair required the presence of NTHL1, an enzyme that catalyzes ß-elimination. Our results suggest that human cells possess at least two back-up AP site repair pathways, one of which is NTHL1-dependent.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA , Humanos , Dano ao DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Endonucleases , Reparo por Excisão , Uracila
9.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362137

RESUMO

Azide-alkyne cycloaddition ("click chemistry") has found wide use in the analysis of molecular interactions in living cells. 5-ethynyl-2-(hydroxymethyl)tetrahydrofuran-3-ol (EAP) is a recently developed apurinic/apyrimidinic (AP) site analog functionalized with an ethynyl moiety, which can be introduced into cells in DNA constructs to perform labeling or cross-linking in situ. However, as a non-natural nucleoside, EAP could be subject to removal by DNA repair and misreading by DNA polymerases. Here, we investigate the interaction of this clickable AP site analog with DNA polymerases and base excision repair enzymes. Similarly to the natural AP site, EAP was non-instructive and followed the "A-rule", directing residual but easily detectable incorporation of dAMP by E. coli DNA polymerase I Klenow fragment, bacteriophage RB69 DNA polymerase and human DNA polymerase ß. On the contrary, EAP was blocking for DNA polymerases κ and λ. EAP was an excellent substrate for the major human AP endonuclease APEX1 and E. coli AP exonucleases Xth and Nfo but was resistant to the AP lyase activity of DNA glycosylases. Overall, our data indicate that EAP, once within a cell, would represent a replication block and would be removed through an AP endonuclease-initiated long-patch base excision repair pathway.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Escherichia coli , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Escherichia coli/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Reparo do DNA , Dano ao DNA , DNA Polimerase I/genética , Endonucleases/metabolismo
10.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806289

RESUMO

Many proteins consist of two or more structural domains: separate parts that have a defined structure and function. For example, in enzymes, the catalytic activity is often localized in a core fragment, while other domains or disordered parts of the same protein participate in a number of regulatory processes. This situation is often observed in many DNA glycosylases, the proteins that remove damaged nucleobases thus initiating base excision DNA repair. This review covers the present knowledge about the functions and evolution of such noncatalytic parts in DNA glycosylases, mostly concerned with the human enzymes but also considering some unique members of this group coming from plants and prokaryotes.


Assuntos
DNA Glicosilases , DNA/química , Dano ao DNA , DNA Glicosilases/metabolismo , Reparo do DNA , Humanos
11.
Biochemistry (Mosc) ; 87(1): 10-20, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35491018

RESUMO

Apurinic/apyrimidinic (AP) endonucleases are the key enzymes in the DNA base excision repair, as they hydrolyze the phosphodiester bond in the AP site formed after removal of the damaged base. Major human AP endonuclease APEX1 also possesses the 3'-phosphodiesterase and 3'→5' exonuclease activities. The biological role of the latter has not been established yet; it is assumed that it corrects DNA synthesis errors during DNA repair. If DNA is damaged at the 3'-side of 5-methylcytosine (mC) residue, the 3'→5' exonuclease activity can change the epigenetic methylation status of the CpG dinucleotide. It remains unclear whether the 3'→5' exonuclease activity of APEX1 contributes to the active epigenetic demethylation or, on the contrary, is limited in the case of methylated CpG dinucleotides in order to preserve the epigenetic status upon repair of accidental DNA damage. Here, we report the results of the first systematic study on the efficiency of removal of 3'-terminal nucleotides from the substrates modeling DNA repair intermediates in the CpG dinucleotides. The best substrates for the 3'→5' exonuclease activity of APEX1 were oligonucleotides with the 3'-terminal bases non-complementary to the template, while the worst substrates contained mC. The presence of mC in the complementary strand significantly reduced the reaction rate even for the non-complementary 3'-ends. Therefore, the efficiency of the 3'→5' exonuclease reaction catalyzed by APEX1 is limited in the case of the methylated CpG dinucleotides, which likely reflects the need to preserve the epigenetic status during DNA repair.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Endonucleases , DNA/metabolismo , Metilação de DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos , Fosfodiesterase I
12.
DNA Repair (Amst) ; 105: 103160, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34192601

RESUMO

GO system is part of base excision DNA repair and is required for the correct repair of 8-oxoguanine (8-oxoG), one of the most abundant oxidative lesions. Due to the ability of 8-oxoG to mispair with A, this base is highly mutagenic, and its repair requires two enzymes: Fpg that removes 8-oxoG from 8-oxoG:C pairs, and MutY that excises the normal A from 8-oxoG:A mispairs. Here we characterize the properties of putative GO system DNA glycosylases from Staphylococcus aureus, an important human opportunistic pathogen that causes hospital infections and presents a serious health concern due to quick spread of antibiotic-resistant strains. In addition to Fpg and MutY from the reference NCTC 8325 strain (SauFpg1 and SauMutY), we have also studied an Fpg homolog from a multidrug-resistant C0673 isolate (SauFpg2), which is different from SauFpg1 in its sequence. Both SauFpg enzymes showed the highest activity at pH 7.0-9.0 and NaCl concentrations 25-75 mM (SauFpg1) or 50-100 mM (SauFpg2), whereas SauMutY was active at a broad pH range and had a salt optimum at ∼75 mM NaCl. Both SauFpg1 and SauFpg2 bound and cleaved duplexes containing 8-oxoG, 5-hydroxyuracil, 5,6-dihydrouracil or apurinic/apyrimidinic site paired with C, T, or G, but not with A. For SauFpg1 and SauFpg2, 8-oxoG was the best substrate tested, and 5,6-dihydrouracil was the worst one. SauMutY efficiently excised adenine from duplex substrates containing A:8-oxoG or A:G pairs. SauFpg enzymes were readily trapped on DNA by NaBH4 treatment, indicating formation of a Schiff base reaction intermediate. Surprisingly, SauMutY was also trapped significantly better than its E. coli homolog. All three S. aureus GO glycosylases drastically reduced spontaneous mutagenesis when expressed in an fpg mutY E. coli double mutant. Overall, we conclude that S. aureus possesses an active GO system, which could possibly be targeted for sensitization of this pathogen to oxidative stress.


Assuntos
Dano ao DNA , DNA Glicosilases/metabolismo , DNA-Formamidopirimidina Glicosilase/metabolismo , Guanina/análogos & derivados , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA Glicosilases/genética , DNA Bacteriano/metabolismo , DNA-Formamidopirimidina Glicosilase/genética , Guanina/metabolismo , Concentração de Íons de Hidrogênio , Filogenia , Alinhamento de Sequência , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Especificidade por Substrato
13.
J Biol Chem ; 296: 100229, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33361155

RESUMO

DNA of living cells is always exposed to damaging factors. To counteract the consequences of DNA lesions, cells have evolved several DNA repair systems, among which base excision repair is one of the most important systems. Many currently used antitumor drugs act by damaging DNA, and DNA repair often interferes with chemotherapy and radiotherapy in cancer cells. Tumors are usually extremely genetically heterogeneous, often bearing mutations in DNA repair genes. Thus, knowledge of the functionality of cancer-related variants of proteins involved in DNA damage response and repair is of great interest for personalization of cancer therapy. Although computational methods to predict the variant functionality have attracted much attention, at present, they are mostly based on sequence conservation and make little use of modern capabilities in computational analysis of 3D protein structures. We have used molecular dynamics (MD) to model the structures of 20 clinically observed variants of a DNA repair enzyme, 8-oxoguanine DNA glycosylase. In parallel, we have experimentally characterized the activity, thermostability, and DNA binding in a subset of these mutant proteins. Among the analyzed variants of 8-oxoguanine DNA glycosylase, three (I145M, G202C, and V267M) were significantly functionally impaired and were successfully predicted by MD. Alone or in combination with sequence-based methods, MD may be an important functional prediction tool for cancer-related protein variants of unknown significance.


Assuntos
DNA Glicosilases/química , Reparo do DNA , DNA de Neoplasias/química , Guanina/análogos & derivados , Mutação , Proteínas de Neoplasias/química , Substituição de Aminoácidos , Sítios de Ligação , Dano ao DNA , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Expressão Gênica , Guanina/química , Guanina/metabolismo , Humanos , Cinética , Leucemia/enzimologia , Leucemia/genética , Leucemia/patologia , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Análise de Componente Principal , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Carcinoma de Pequenas Células do Pulmão/enzimologia , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia
14.
Genes (Basel) ; 11(8)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751599

RESUMO

In the base excision repair pathway, the initiating enzymes, DNA glycosylases, remove damaged bases and form long-living complexes with the abasic DNA product, but can be displaced by AP endonucleases. However, many nuclear proteins can move along DNA, either actively (such as DNA or RNA polymerases) or by passive one-dimensional diffusion. In most cases, it is not clear whether this movement is disturbed by other bound proteins or how collisions with moving proteins affect the bound proteins, including DNA glycosylases. We have used a two-substrate system to study the displacement of human OGG1 and NEIL1 DNA glycosylases by DNA polymerases in both elongation and diffusion mode and by D4, a passively diffusing subunit of a viral DNA polymerase. The OGG1-DNA product complex was disrupted by DNA polymerase ß (POLß) in both elongation and diffusion mode, Klenow fragment (KF) in the elongation mode and by D4. NEIL1, which has a shorter half-life on DNA, was displaced more efficiently. Hence, both possibly specific interactions with POLß and nonspecific collisions (KF, D4) can displace DNA glycosylases from DNA. The protein movement along DNA was blocked by very tightly bound Cas9 RNA-targeted nuclease, providing an upper limit on the efficiency of obstacle clearance.


Assuntos
DNA Glicosilases/metabolismo , DNA Polimerase beta/metabolismo , DNA/metabolismo , Sítios de Ligação , Proteína 9 Associada à CRISPR/metabolismo , DNA/química , DNA/genética , Dano ao DNA , DNA Glicosilases/química , DNA Polimerase I/metabolismo , DNA Polimerase beta/química , Reparo do DNA , Humanos , Ligação Proteica
15.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354123

RESUMO

DNA glycosylases are enzymes that initiate the base excision repair pathway, a major biochemical process that protects the genomes of all living organisms from intrinsically and environmentally inflicted damage. Recently, base excision repair inhibition proved to be a viable strategy for the therapy of tumors that have lost alternative repair pathways, such as BRCA-deficient cancers sensitive to poly(ADP-ribose)polymerase inhibition. However, drugs targeting DNA glycosylases are still in development and so far have not advanced to clinical trials. In this review, we cover the attempts to validate DNA glycosylases as suitable targets for inhibition in the pharmacological treatment of cancer, neurodegenerative diseases, chronic inflammation, bacterial and viral infections. We discuss the glycosylase inhibitors described so far and survey the advances in the assays for DNA glycosylase reactions that may be used to screen pharmacological libraries for new active compounds.


Assuntos
DNA Glicosilases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/enzimologia , Reparo do DNA , Descoberta de Drogas , Inibidores Enzimáticos/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/enzimologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Viroses/tratamento farmacológico , Viroses/enzimologia
16.
Front Cell Dev Biol ; 8: 617301, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505969

RESUMO

Bifunctional 8-oxoguanine-DNA glycosylase (OGG1), a crucial DNA-repair enzyme, removes from DNA 8-oxo-7,8-dihydroguanine (8-oxoG) with following cleavage of the arising apurinic/apyrimidinic (AP) site. The major enzyme in eukaryotic cells that catalyzes the cleavage of AP sites is AP endonuclease 1 (APE1). Alternatively, AP sites can be cleaved by tyrosyl-DNA phosphodiesterase 1 (TDP1) to initiate APE1-independent repair, thus expanding the ability of the base excision repair (BER) process. Poly(ADP-ribose) polymerase 1 (PARP1) is a regulatory protein of DNA repair. PARP2 is also activated in response to DNA damage and can be regarded as the BER participant. Here we analyze PARP1 and PARP2 interactions with DNA intermediates of the initial stages of the BER process (8-oxoG and AP-site containing DNA) and their interplay with the proteins recognizing and processing these DNA structures focusing on OGG1. OGG1 as well as PARP1 and PARP2 form covalent complex with AP site-containing DNA without borohydride reduction. AP site incision by APE1 or TDP1 removal of protein adducts but not proteins' PARylation prevent DNA-protein crosslinks.

17.
Mutagenesis ; 35(1): 119-128, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31784740

RESUMO

Oxidative DNA lesions, constantly generated by both endogenous and environmentally induced reactive oxygen species, are removed via the base excision repair pathway. In bacteria, Fpg and Nei DNA glycosylases, belonging to the helix-two-turn-helix (H2TH) structural superfamily, remove oxidised purines and pyrimidines, respectively. Interestingly, the human H2TH family glycosylases, NEIL1, NEIL2 and NEIL3, have been reported to prefer oxidative lesions in DNA bubbles or single-stranded DNA. It had been hypothesised that NEIL2 might be involved in the repair of lesions in transcription bubbles; however, bubble-like structures may appear in other cellular contexts such as displacement loops (D-loops) associated with transcription, recombination or telomere maintenance. The activities of bacterial Fpg and Nei on bubble substrates were not addressed. Also, it is not known whether H2TH enzymes process bubbles containing the third DNA or RNA strand, and how the bubble length and position of the lesion within a bubble affect the excision. We have investigated the removal of 8-oxoguanine (8-oxoG) and 5,6-dihydrouracil (DHU) by Escherichia coli Fpg and Nei and human NEIL1 and NEIL2 from single-strand oligonucleotides, perfect duplexes, bubbles with different numbers of unpaired bases (6-30), bubbles containing the lesion in different positions and D-loops with the third strand made of DNA or RNA. Fpg, NEIL1 and NEIL2 efficiently excised lesions located within bubbles, with NEIL1 and NEIL2 being specific for DHU, and Fpg removing both 8-oxoG and DHU. Nei, in contrast, was significantly active only on DHU located in double-stranded DNA. Fpg and NEIL1 also tolerated the presence of the third strand of either DNA or RNA in D-loops if the lesion was in the single-stranded part, and Fpg, Nei and NEIL1 excised lesions from the double-stranded DNA part of D-loops. The presence of an additional unpaired 5'-tail of DNA or RNA did not affect the activity. No significant position preference for lesions in a 12-mer bubble was found. Overall, the activities of Fpg, NEIL1 and NEIL2 on these non-canonical substrates are consistent with the possibility that these enzymes may participate in the repair in structures arising during transcription or homologous recombination.


Assuntos
DNA Glicosilases/química , DNA Glicosilases/metabolismo , Reparo do DNA/fisiologia , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , DNA/química , DNA/metabolismo , Dano ao DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA-Formamidopirimidina Glicosilase/metabolismo , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Conformação de Ácido Nucleico , Estresse Oxidativo , Transcrição Gênica/fisiologia , Uracila/análogos & derivados , Uracila/metabolismo
18.
DNA Repair (Amst) ; 82: 102698, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31518879

RESUMO

Aerobic respiration generates reactive oxygen species (ROS), which can damage nucleic acids, proteins and lipids. A number of transcription factors (TFs) contain redox-sensitive cysteine residues at their DNA-binding sites, hence ROS-induced thiol oxidation strongly inhibits their recognition of the cognate DNA sequences. Major human apurinic/apyrimidinic (AP) endonuclease 1 (APE1/APEX1/HAP-1), referred also as a redox factor 1 (Ref-1), stimulates the DNA binding activities of the oxidized TFs such as AP-1 and NF-κB. Also, APE1 participates in the base excision repair (BER) and nucleotide incision repair (NIR) pathways to remove oxidative DNA base damage. At present, the molecular mechanism underlying the TF-stimulating/redox function of APE1 and its biological role remains disputed. Here, we provide evidence that, instead of direct cysteine reduction in TFs by APE1, APE1-catalyzed NIR and TF-stimulating activities may be based on transient cooperative binding of APE1 to DNA and induction of conformational changes in the helix. The structure of DNA duplex strongly influences NIR and TF-stimulating activities. Homologous plant AP endonucleases lacking conserved cysteine residues stimulate DNA binding of the p50 subunit of NF-κB. APE1 acts synergistically with low-molecular-weight reducing agents on TFs. Finally, APE1 stimulates DNA binding of the redox-insensitive p50-C62S mutant protein. Electron microscopy imaging of APE1 complexes with DNA revealed preferential polymerization of APE1 on the gapped and intrinsically curved DNA duplexes. Molecular modeling offers a structural explanation how full-length APE1 can oligomerize on DNA. In conclusion, we propose that DNA-directed APE1 oligomerization can be regarded as a substitute for diffusion of APE1 along the DNA contour to probe for anisotropic flexibility. APE1 oligomers exacerbate pre-existing distortions in DNA and enable both NIR activity and DNA binding by TFs regardless of their oxidation state.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Biocatálise , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Humanos , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína
19.
Biochemistry ; 58(24): 2740-2749, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31120733

RESUMO

DNA glycosylases, the enzymes that initiate base excision DNA repair, recognize damaged bases through a series of precisely orchestrated movements. Most glycosylases sharply kink the DNA axis at the lesion site and extrude the target base from the DNA double helix into the enzyme's active site. Little attention has been paid so far to the role of the physical continuity of the DNA backbone in allowing the required conformational distortion. Here, we analyze base excision by formamidopyrimidine-DNA glycosylase (Fpg) from substrates keeping all phosphates but containing a nick within three nucleotides of the lesion in either DNA strand. Four phosphoester linkages at the damaged nucleotide and two nucleotides 3' to it were essential for Fpg activity, while the breakage of the others, even at the same critical phosphates, had no effect or even stimulated the reaction. Reduction of the likelihood of hydrogen bonding at the nicks by using dideoxynucleotides as their 3'-terminal groups was more detrimental for the activity. All phosphoester bonds in the complementary strand were dispensable for base excision, but nicks close to the orphaned nucleotide caused early termination of damaged strand cleavage. Elastic network analysis of Fpg-DNA structures showed that the vibrational motions of the critical phosphates are strongly correlated, in part due to the presence of the protein. Overall, our results suggest that mechanical forces propagating along the DNA backbone play a critical role in the correct conformational distortion of DNA by Fpg and possibly by other target base-everting DNA glycosylases.


Assuntos
DNA Complementar/química , DNA-Formamidopirimidina Glicosilase/química , Proteínas de Escherichia coli/química , Biocatálise , DNA Glicosilases/química , Reparo do DNA , DNA Complementar/genética , Escherichia coli/enzimologia , Humanos , Cinética , Estrutura Molecular
20.
J Biomol Struct Dyn ; 37(17): 4407-4418, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30488779

RESUMO

Transient protein-protein complexes are of great importance for organizing multiple enzymatic reactions into productive reaction pathways. Base excision repair (BER), a process of critical importance for maintaining genome stability against a plethora of DNA-damaging factors, involves several enzymes, including DNA glycosylases, AP endonucleases, DNA polymerases, DNA ligases and accessory proteins acting sequentially on the same damaged site in DNA. Rather than being assembled into one stable multisubunit complex, these enzymes pass the repair intermediates between them in a highly coordinated manner. In this review, we discuss the nature and the role of transient complexes arising during BER as deduced from structural and kinetic data. Almost all of the transient complexes are DNA-mediated, although some may also exist in solution and strengthen under specific conditions. The best-studied example, the interactions between DNA glycosylases and AP endonucleases, is discussed in more detail to provide a framework for distinguishing between stable and transient complexes based on the kinetic data. Communicated by Ramaswamy H. Sarma.


Assuntos
Reparo do DNA , Complexos Multiproteicos/metabolismo , Animais , DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos , Ligação Proteica , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...