Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; : e0030024, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832774

RESUMO

Staphylococcus aureus is a common bacterium on the skin and in the nose that sometimes causes severe illness. Bacteriocins, antimicrobial peptides, or proteins produced by bacteria are candidates for the treatment of S. aureus infection. In this study, we found that a clinical Staphylococcus epidermidis strain, KSE112, produced the lantibiotic Pep5, which showed anti-S. aureus activity. The complete nucleotide sequence of the Pep5-encoding plasmid was determined. Several S. aureus two-component regulatory systems (TCSs) are known to be involved in bacteriocin susceptibility. Therefore, susceptibility tests were performed using TCS-inactivated S. aureus mutants to determine which TCS is responsible for Pep5 susceptibility; the ΔgraRS mutant exhibited increased susceptibility to Pep5, while the ΔsrrAB mutant exhibited decreased susceptibility. GraRS is known to regulate dltABCD and mprF in concert with vraFG, and Pep5 susceptibility was significantly increased in the ΔdltABCD, ΔmprF, and ΔvraFG mutants. Regarding the ΔsrrAB mutant, cross-resistance to aminoglycosides was observed. As aminoglycoside activity is known to be affected by aerobic respiration, we focused on qoxABCD and cydAB, which are quinol oxidase genes that are necessary for aerobic respiration and have downregulated the expression in the ΔsrrAB mutant. We constructed ΔqoxABCD and ΔcydAB mutants and found that qoxABCD inactivation decreased susceptibility to Pep5 and aminoglycosides. These results indicate that reduced aerobic respiration due to the reduced qoxABCD expression in the ΔsrrAB mutant decreased Pep5 activity.IMPORTANCEThe emergence of drug-resistant bacteria, including MRSA, is a severe health problem worldwide. Thus, the development of novel antimicrobial agents, including bacteriocins, is needed. In this report, we found a Pep5-producing strain with anti-S. aureus activity. We determined the complete sequence of the Pep5-encoding plasmid for the first time. However, in S. aureus, GraRS and its effectors conferred decreased susceptibility to Pep5. We also revealed that another TCS, SrrAB, affects susceptibility Pep5 and other lantibiotics by controlling aerobic respiration. In our study, we investigated the efficacy of Pep5 against S. aureus and other Gram-positive bacteria and revealed that respiratory constancy regulated by TCS is required for the antimicrobial activity of nisin, nukacin, and Pep5. These findings provide important information for the clinical application of bacteriocins and suggest that they have different properties among similar pore-forming lantibiotics.

2.
Appl Environ Microbiol ; 90(3): e0208423, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38411065

RESUMO

Streptococcus mutans is a cariogenic bacterium that produces a variety of bacteriocins and retains resistance to these bacteriocins. In this study, we investigated the susceptibility of 127 S. mutans strains to nukacins produced by Staphylococcus spp., which are commensal bacteria in humans. We detected diverse susceptibilities among strains. Nineteen strains had a disrupted LctF (type I), which is responsible for nukacin susceptibility, whereas the remaining 108 strains had an intact LctF (type II) and displayed resistance to nukacins. However, the type I strains still showed resistance to nukacins to some extent. Interestingly, 18/19 (94.7%) type I strains carried a mukA-T locus, which is related to the synthesis of mutacin K8, and mukFEG, an ABC transporter. In contrast, among type II strains, only 6/108 strains (5.6%) had both the mukA-T locus and mukFEG, 19/108 strains (17.6%) carried only mukFEG, and 83/108 strains (76.9%) harbored neither mukA-T nor mukFEG. We also found that MukF had two variants: 305 amino acids (type α) and 302 amino acids (type ß). All type I strains showed a type α (MukFα), whereas most type II strains with mukFEG (22/25 strains) had a type ß (MukFß). Then, we constructed a mukFEG-deletion mutant complemented with MukFαEG or MukFßEG and found that only MukFαEG was involved in nukacin resistance. The nukacin resistance capability of type II-LctFEG was stronger than that of MukFαEG. In conclusion, we identified a novel nukacin resistance factor, MukFEG, and either LctFEG or MukFEG was active in most strains via genetic polymorphisms depending on mukA-T genes. IMPORTANCE: Streptococcus mutans is an important pathogenic bacterium not only for dental caries but also for systemic diseases. S. mutans is known to produce a variety of bacteriocins and to retain resistance these bacteriocins. In this study, two ABC transporters, LctFEG and MukFEG, were implicated in nukacin resistance and each ABC transporter has two subtypes, active and inactive. Of the two ABC transporters, only one ABC transporter was always resistant, while the other ABC transporter was inactivated by genetic mutation. Interestingly, this phenomenon was defined by the presence or absence of the mutacin K8 synthesis gene region, one of the bacteriocins of S. mutans. This suggests that the resistance acquisition is tightly controlled in each strain. This study provides important evidence that the insertion of bacteriocin synthesis genes is involved in the induction of genetic polymorphisms and suggests that bacteriocin synthesis genes may play an important role in bacterial evolution.


Assuntos
Bacteriocinas , Cárie Dentária , Humanos , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Polimorfismo Genético , Aminoácidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...