Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 22655, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36587051

RESUMO

The transition from terrestrial to marine environments by secondarily aquatic tetrapods necessitates a suite of adaptive changes associated with life in the sea, e.g., the scaleless skin in adult individuals of the extant leatherback turtle. A partial, yet exceptionally preserved hard-shelled (Pan-Cheloniidae) sea turtle with extensive soft-tissue remains, including epidermal scutes and a virtually complete flipper outline, was recently recovered from the Eocene Fur Formation of Denmark. Examination of the fossilized limb tissue revealed an originally soft, wrinkly skin devoid of scales, together with organic residues that contain remnant eumelanin pigment and inferred epidermal transformation products. Notably, this stem cheloniid-unlike its scaly living descendants-combined scaleless limbs with a bony carapace covered in scutes. Our findings show that the adaptive transition to neritic waters by the ancestral pan-chelonioids was more complex than hitherto appreciated, and included at least one evolutionary lineage with a mosaic of integumental features not seen in any living turtle.


Assuntos
Tartarugas , Animais , Pele , Répteis , Evolução Biológica , Epiderme
2.
Nanomedicine ; 43: 102563, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35504462

RESUMO

Light microscopy has been a favorite tool of biological studies for almost a century, recently producing detailed images with exquisite molecular specificity achieving spatial resolution at nanoscale. However, light microscopy is insufficient to provide chemical information as a standalone technique. An increasing amount of evidence demonstrates that optical photothermal infrared microspectroscopy (O-PTIR) is a valuable imaging tool that can extract chemical information to locate molecular structures at submicron resolution. To further investigate the applicability of sub-micron infrared microspectroscopy for biomedical applications, we analyzed the contribution of substrate chemistry to the infrared spectra acquired from individual neurons grown on various imaging substrates. To provide an example of correlative immunofluorescence/O-PTIR imaging, we used immunofluorescence to locate specific organelles for O-PTIR measurement, thus capturing molecular structures at the sub-cellular level directly in cells, which is not possible using traditional infrared microspectroscopy or immunofluorescence microscopy alone.


Assuntos
Espectrofotometria Infravermelho , Microscopia de Fluorescência , Estrutura Molecular , Espectrofotometria Infravermelho/métodos
3.
Cells ; 10(10)2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34685539

RESUMO

Alzheimer's disease (AD) accounts for about 70% of neurodegenerative diseases and is a cause of cognitive decline and death for one-third of seniors. AD is currently underdiagnosed, and it cannot be effectively prevented. Aggregation of amyloid-ß (Aß) proteins has been linked to the development of AD, and it has been established that, under pathological conditions, Aß proteins undergo structural changes to form ß-sheet structures that are considered neurotoxic. Numerous intensive in vitro studies have provided detailed information about amyloid polymorphs; however, little is known on how amyloid ß-sheet-enriched aggregates can cause neurotoxicity in relevant settings. We used scattering-type scanning near-field optical microscopy (s-SNOM) to study amyloid structures at the nanoscale, in individual neurons. Specifically, we show that in well-validated systems, s-SNOM can detect amyloid ß-sheet structures with nanometer spatial resolution in individual neurons. This is a proof-of-concept study to demonstrate that s-SNOM can be used to detect Aß-sheet structures on cell surfaces at the nanoscale. Furthermore, this study is intended to raise neurobiologists' awareness of the potential of s-SNOM as a tool for analyzing amyloid ß-sheet structures at the nanoscale in neurons without the need for immunolabeling.


Assuntos
Sistemas de Liberação de Fármacos por Nanopartículas/uso terapêutico , Neurônios/fisiologia , Espectrofotometria Infravermelho/métodos , Humanos , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia
4.
Light Sci Appl ; 10(1): 151, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294676

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia, costing about 1% of the global economy. Failures of clinical trials targeting amyloid-ß protein (Aß), a key trigger of AD, have been explained by drug inefficiency regardless of the mechanisms of amyloid neurotoxicity, which are very difficult to address by available technologies. Here, we combine two imaging modalities that stand at opposite ends of the electromagnetic spectrum, and therefore, can be used as complementary tools to assess structural and chemical information directly in a single neuron. Combining label-free super-resolution microspectroscopy for sub-cellular imaging based on novel optical photothermal infrared (O-PTIR) and synchrotron-based X-ray fluorescence (S-XRF) nano-imaging techniques, we capture elemental distribution and fibrillary forms of amyloid-ß proteins in the same neurons at an unprecedented resolution. Our results reveal that in primary AD-like neurons, iron clusters co-localize with elevated amyloid ß-sheet structures and oxidized lipids. Overall, our O-PTIR/S-XRF results motivate using high-resolution multimodal microspectroscopic approaches to understand the role of molecular structures and trace elements within a single neuronal cell.

5.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810433

RESUMO

Alzheimer's disease affects millions of lives worldwide. This terminal disease is characterized by the formation of amyloid aggregates, so-called amyloid oligomers. These oligomers are composed of ß-sheet structures, which are believed to be neurotoxic. However, the actual secondary structure that contributes most to neurotoxicity remains unknown. This lack of knowledge is due to the challenging nature of characterizing the secondary structure of amyloids in cells. To overcome this and investigate the molecular changes in proteins directly in cells, we used synchrotron-based infrared microspectroscopy, a label-free and non-destructive technique available for in situ molecular imaging, to detect structural changes in proteins and lipids. Specifically, we evaluated the formation of ß-sheet structures in different monogenic and bigenic cellular models of Alzheimer's disease that we generated for this study. We report on the possibility to discern different amyloid signatures directly in cells using infrared microspectroscopy and demonstrate that bigenic (amyloid-ß, α-synuclein) and (amyloid-ß, Tau) neuron-like cells display changes in ß-sheet load. Altogether, our findings support the notion that different molecular mechanisms of amyloid aggregation, as opposed to a common mechanism, are triggered by the specific cellular environment and, therefore, that various mechanisms lead to the development of Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Amiloide/química , Espectrofotometria Infravermelho/métodos , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Microscopia de Fluorescência , Neuroblastoma/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons , alfa-Sinucleína/química
6.
Faraday Discuss ; 222(0): 332-349, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32101206

RESUMO

The functionalisation of silicon nanoparticles with a terminal thiocyanate group, producing isothiocyanate-capped silicon nanoparticles (ITC-capped SiNPs) has been successfully attained. The procedure for the synthesis is a two-step process that occurs via thermally induced hydrosilylation of hydrogen terminated silicon nanoparticles (H-SiNPs) and further reaction with potassium thiocyanate (KSCN). The synthesis was confirmed by Fourier transform infrared (FTIR) spectroscopy and X-Ray photoelectron spectroscopy (XPS). At the same time, the internalisation and the cytotoxicity of the ITC-capped SiNPs in vitro were assessed in two cell lines: Caco-2, human colorectal cancer cells and CCD-841, human colon "normal" cells. The results showed that above concentrations of 15 µg ml-1, the cell viability of both cell lines was depleted significantly when treated with ITC SiNPs, particularly over a 48 hour period, to approximately 20% cell viability at the highest treatment concentration (70 µg ml-1). Flow cytometry was employed to determine cellular uptake in Caco-2 cells treated with ITC SiNPs. It was observed that at lower SiNP concentrations, uptake efficiency was significantly improved for time periods under 12 hours; overall it was noted that cellular uptake was positively dependent on the period of incubation and the temperature of incubation. As such, it was concluded that the mechanism of uptake of ITC SiNPs was through endocytosis. Synchrotron FTIR spectroscopy, by means of line spectral analysis and IR imaging, provided further evidence to suggest the internalisation of ITC SiNPs displays a strong localisation, with an affinity for the nucleus of treated Caco-2 cells.


Assuntos
Citotoxinas/farmacologia , Isotiocianatos/farmacologia , Nanopartículas/química , Silício/química , Células CACO-2 , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/síntese química , Citotoxinas/metabolismo , Relação Dose-Resposta a Droga , Endocitose/fisiologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Humanos , Hidrogenação , Hidrólise , Isotiocianatos/química , Nanopartículas/ultraestrutura , Espectroscopia Fotoeletrônica
7.
Nature ; 564(7736): 359-365, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30518862

RESUMO

Ichthyosaurs are extinct marine reptiles that display a notable external similarity to modern toothed whales. Here we show that this resemblance is more than skin deep. We apply a multidisciplinary experimental approach to characterize the cellular and molecular composition of integumental tissues in an exceptionally preserved specimen of the Early Jurassic ichthyosaur Stenopterygius. Our analyses recovered still-flexible remnants of the original scaleless skin, which comprises morphologically distinct epidermal and dermal layers. These are underlain by insulating blubber that would have augmented streamlining, buoyancy and homeothermy. Additionally, we identify endogenous proteinaceous and lipid constituents, together with keratinocytes and branched melanophores that contain eumelanin pigment. Distributional variation of melanophores across the body suggests countershading, possibly enhanced by physiological adjustments of colour to enable photoprotection, concealment and/or thermoregulation. Convergence of ichthyosaurs with extant marine amniotes thus extends to the ultrastructural and molecular levels, reflecting the omnipresent constraints of their shared adaptation to pelagic life.


Assuntos
Evolução Biológica , Regulação da Temperatura Corporal , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Fósseis , Homeostase , Adaptação Fisiológica , Tecido Adiposo/anatomia & histologia , Tecido Adiposo/química , Animais , Derme/anatomia & histologia , Derme/química , Golfinhos , Epiderme/anatomia & histologia , Epiderme/química , Feminino , Queratinócitos/química , Lipídeos/análise , Masculino , Melaninas/análise , Melanóforos/química , Toninhas , Proteínas/análise
8.
Sci Rep ; 7(1): 13324, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042651

RESUMO

The holotype (MHM-K2) of the Eocene cheloniine Tasbacka danica is arguably one of the best preserved juvenile fossil sea turtles on record. Notwithstanding compactional flattening, the specimen is virtually intact, comprising a fully articulated skeleton exposed in dorsal view. MHM-K2 also preserves, with great fidelity, soft tissue traces visible as a sharply delineated carbon film around the bones and marginal scutes along the edge of the carapace. Here we show that the extraordinary preservation of the type of T. danica goes beyond gross morphology to include ultrastructural details and labile molecular components of the once-living animal. Haemoglobin-derived compounds, eumelanic pigments and proteinaceous materials retaining the immunological characteristics of sauropsid-specific ß-keratin and tropomyosin were detected in tissues containing remnant melanosomes and decayed keratin plates. The preserved organics represent condensed remains of the cornified epidermis and, likely also, deeper anatomical features, and provide direct chemical evidence that adaptive melanism - a biological means used by extant sea turtle hatchlings to elevate metabolic and growth rates - had evolved 54 million years ago.


Assuntos
Fósseis , Tartarugas/anatomia & histologia , Animais , Fósseis/anatomia & histologia , Fósseis/ultraestrutura , Imuno-Histoquímica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Nat Ecol Evol ; 1(8): 1093-1099, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29046567

RESUMO

Gene sequences form the primary basis for understanding the relationships among extant plant groups, but genetic data are unavailable from fossils to evaluate the affinities of extinct taxa. Here we show that geothermally resistant fossil cuticles of seed-bearing plants, analysed with Fourier transform infrared (FTIR) spectroscopy and hierarchical cluster analysis (HCA), retain biomolecular suites that consistently distinguish major taxa even after experiencing different diagenetic histories. Our results reveal that similarities between the cuticular biochemical signatures of major plant groups (extant and fossil) are mostly consistent with recent phylogenetic hypotheses based on molecular and morphological data. Our novel chemotaxonomic data also support the hypothesis that the extinct Nilssoniales and Bennettitales are closely allied, but only distantly related to Cycadales. The chemical signature of the cuticle of Czekanowskia (Leptostrobales) is strongly similar to that of Ginkgo leaves and supports a close evolutionary relationship between these groups. Finally, our results also reveal that the extinct putative araucariacean, Allocladus, when analysed through HCA, is grouped closer to Ginkgoales than to conifers. Thus, in the absence of modern relatives yielding molecular information, FTIR spectroscopy provides valuable proxy biochemical data complementing morphological characters to distinguish fossil taxa and to help elucidate extinct plant relationships.


Assuntos
Fósseis , Filogenia , Folhas de Planta/química , Traqueófitas/química , Traqueófitas/classificação , Evolução Biológica , Análise por Conglomerados , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
10.
Phys Chem Chem Phys ; 18(22): 14933-40, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27189431

RESUMO

After having emerged as primary contenders in the race for highly efficient optoelectronics materials, organolead halide perovskites (OHLP) are now being investigated in the nanoscale regime as promising building blocks with unique properties. For example, unlike their bulk counterpart, quantum dots of OHLP are brightly luminescent, owing to large exciton binding energies that cannot be rationalized solely on the basis of quantum confinement. Here, we establish the direct correlation between the structure and the electronic band-edge properties of CH3NH3PbBr3 nanoparticles. Complementary structural and spectroscopic measurements probing long-range and local order reveal that lattice strain influences the nature of the valence band and modifies the subtle stereochemical activity of the Pb(2+) lone-pair. More generally, this work demonstrates that the stereochemical activity of the lone-pair at the metal site is a specific physicochemical parameter coupled to composition, size and strain, which can be employed to engineer novel functionalities in OHLP nanomaterials.

11.
Astrobiology ; 15(10): 825-42, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26496525

RESUMO

Opaline silica deposits on Mars may be good target sites where organic biosignatures could be preserved. Potential analogues on Earth are provided by ancient cherts containing carbonaceous material (CM) permineralized by silica. In this study, we investigated the ultrastructure and chemical characteristics of CM in the Rhynie chert (c. 410 Ma, UK), Bitter Springs Formation (c. 820 Ma, Australia), and Wumishan Formation (c. 1485 Ma, China). Raman spectroscopy indicates that the CM has experienced advanced diagenesis or low-grade metamorphism at peak metamorphic temperatures of 150-350°C. Raman mapping and micro-Fourier transform infrared (micro-FTIR) spectroscopy were used to document subcellular-scale variation in the CM of fossilized plants, fungi, prokaryotes, and carbonaceous stromatolites. In the Rhynie chert, ultrastructural variation in the CM was found within individual fossils, while in coccoidal and filamentous microfossils of the Bitter Springs and formless CM of the Wumishan stromatolites ultrastructural variation was found between, not within, different microfossils. This heterogeneity cannot be explained by secondary geological processes but supports diverse carbonaceous precursors that experienced differential graphitization. Micro-FTIR analysis found that CM with lower structural order contains more straight carbon chains (has a lower R3/2 branching index) and that the structural order of eukaryotic CM is more heterogeneous than prokaryotic CM. This study demonstrates how Raman spectroscopy combined with micro-FTIR can be used to investigate the origin and preservation of silica-permineralized organics. This approach has good capability for furthering our understanding of CM preserved in Precambrian cherts, and potential biosignatures in siliceous deposits on Mars.


Assuntos
Fósseis/ultraestrutura , Austrália , Carbono , China , Cianobactérias/química , Cianobactérias/ultraestrutura , Fungos/química , Fungos/ultraestrutura , Sedimentos Geológicos/química , Plantas/química , Plantas/ultraestrutura , Células Procarióticas/química , Células Procarióticas/ultraestrutura , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
12.
Proc Biol Sci ; 282(1813): 20150614, 2015 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-26290071

RESUMO

Colour, derived primarily from melanin and/or carotenoid pigments, is integral to many aspects of behaviour in living vertebrates, including social signalling, sexual display and crypsis. Thus, identifying biochromes in extinct animals can shed light on the acquisition and evolution of these biological traits. Both eumelanin and melanin-containing cellular organelles (melanosomes) are preserved in fossils, but recognizing traces of ancient melanin-based coloration is fraught with interpretative ambiguity, especially when observations are based on morphological evidence alone. Assigning microbodies (or, more often reported, their 'mouldic impressions') as melanosome traces without adequately excluding a bacterial origin is also problematic because microbes are pervasive and intimately involved in organismal degradation. Additionally, some forms synthesize melanin. In this review, we survey both vertebrate and microbial melanization, and explore the conflicts influencing assessment of microbodies preserved in association with ancient animal soft tissues. We discuss the types of data used to interpret fossil melanosomes and evaluate whether these are sufficient for definitive diagnosis. Finally, we outline an integrated morphological and geochemical approach for detecting endogenous pigment remains and associated microstructures in multimillion-year-old fossils.


Assuntos
Evolução Biológica , Fósseis , Melaninas/química , Microcorpos/química , Pigmentação , Vertebrados/fisiologia , Animais , Melanossomas/fisiologia
13.
Sci Rep ; 5: 13520, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26311035

RESUMO

Feathers are amongst the most complex epidermal structures known, and they have a well-documented evolutionary trajectory across non-avian dinosaurs and basal birds. Moreover, melanosome-like microbodies preserved in association with fossil plumage have been used to reconstruct original colour, behaviour and physiology. However, these putative ancient melanosomes might alternatively represent microorganismal residues, a conflicting interpretation compounded by a lack of unambiguous chemical data. We therefore used sensitive molecular imaging, supported by multiple independent analytical tests, to demonstrate that the filamentous epidermal appendages in a new specimen of the Jurassic paravian Anchiornis comprise remnant eumelanosomes and fibril-like microstructures, preserved as endogenous eumelanin and authigenic calcium phosphate. These results provide novel insights into the early evolution of feathers at the sub-cellular level, and unequivocally determine that melanosomes can be preserved in fossil feathers.


Assuntos
Aves/anatomia & histologia , Dinossauros/anatomia & histologia , Plumas/ultraestrutura , Animais , Durapatita/química , Epiderme/ultraestrutura , Fósseis , Melaninas , Microcorpos/ultraestrutura , Microscopia Eletrônica , Espectrometria de Massa de Íon Secundário , Espectrometria por Raios X , Espectrofotometria Infravermelho , Fatores de Tempo
14.
Anal Bioanal Chem ; 404(5): 1311-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22918569

RESUMO

FTIR imaging of individual cells is still limited by the low signal-to-noise ratio obtained from analysis of such weakly absorbing organic matter when using a Globar IR source. In this study, we used FTIR imaging with a synchrotron radiation source and a focal plane array detector to determine changes in the cellular contents of cryofixed cells after culture for 48 h on Si(3)N(4) substrate. Several spectral differences were observed for cells deprived of glucose compared with control cells: a lower amide I-to-amide II ratio (P < 0.01); a different secondary structure profile of proteins (obtained from amide I spectral region curve fitting), with a significant increase in non-ordered structure components (P < 0.01); and a higher ν(C = C-H)/ν(as)(CH(3)) absorption ratio (P < 0.01), suggesting increased unsaturation of fatty acyl chains. Therefore, our study has shown that FTIR imaging with a synchrotron radiation source enables determination of several spectral changes of individual cells between two experimental conditions, which thus opens the way to cell biology studies with this vibrational spectroscopy technique.


Assuntos
Células Endoteliais/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Linhagem Celular , Sobrevivência Celular , Células Endoteliais/citologia , Ácidos Graxos/análise , Humanos , Microvasos/citologia , Estrutura Secundária de Proteína , Proteínas/análise , Razão Sinal-Ruído , Síncrotrons
15.
Nat Commun ; 3: 824, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22569368

RESUMO

Fossil feathers, hairs and eyes are regularly preserved as carbonized traces comprised of masses of micrometre-sized bodies that are spherical, oblate or elongate in shape. For a long time, these minute structures were regarded as the remains of biofilms of keratinophilic bacteria, but recently they have been reinterpreted as melanosomes; that is, colour-bearing organelles. Resolving this fundamental difference in interpretation is crucial: if endogenous then the fossil microbodies would represent a significant advancement in the fields of palaeontology and evolutionary biology given, for example, the possibility to reconstruct integumentary colours and plumage colour patterns. It has previously been shown that certain trace elements occur in fossils as organometallic compounds, and hence may be used as biomarkers for melanin pigments. Here we expand this knowledge by demonstrating the presence of molecularly preserved melanin in intimate association with melanosome-like microbodies isolated from an argentinoid fish eye from the early Eocene of Denmark.


Assuntos
Evolução Biológica , Olho/química , Olho/metabolismo , Fósseis , Melaninas/metabolismo , Animais , Dinamarca , Peixes , Melanossomas/química , Melanossomas/metabolismo , Paleontologia , Pigmentação
16.
PLoS One ; 6(4): e19445, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21559386

RESUMO

Low concentrations of the structural protein collagen have recently been reported in dinosaur fossils based primarily on mass spectrometric analyses of whole bone extracts. However, direct spectroscopic characterization of isolated fibrous bone tissues, a crucial test of hypotheses of biomolecular preservation over deep time, has not been performed. Here, we demonstrate that endogenous proteinaceous molecules are retained in a humerus from a Late Cretaceous mosasaur (an extinct giant marine lizard). In situ immunofluorescence of demineralized bone extracts shows reactivity to antibodies raised against type I collagen, and amino acid analyses of soluble proteins extracted from the bone exhibit a composition indicative of structural proteins or their breakdown products. These data are corroborated by synchrotron radiation-based infrared microspectroscopic studies demonstrating that amino acid containing matter is located in bone matrix fibrils that express imprints of the characteristic 67 nm D-periodicity typical of collagen. Moreover, the fibrils differ significantly in spectral signature from those of potential modern bacterial contaminants, such as biofilms and collagen-like proteins. Thus, the preservation of primary soft tissues and biomolecules is not limited to large-sized bones buried in fluvial sandstone environments, but also occurs in relatively small-sized skeletal elements deposited in marine sediments.


Assuntos
Osso e Ossos/metabolismo , Compostos de Anilina/farmacologia , Animais , Biofilmes , Matriz Óssea/química , Osso e Ossos/química , Colágeno/química , Úmero/patologia , Espectrometria de Massas/métodos , Microscopia Confocal/métodos , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão/métodos , Microscopia de Fluorescência/métodos , Paleontologia/métodos , Espectrofotometria/métodos , Espectrofotometria Infravermelho/métodos
17.
J Chem Phys ; 122(12): 126101, 2005 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-15836426

RESUMO

A hydrogen bonded complex between a hydroxyl radical and ozone has been found in argon matrices at 9 K. The shift of the OH stretch (-12.6 cm-1) indicates that this complex is somewhat weaker than the OH-CO complex (-21.8 cm-1, D0

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...