Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(9): e202318412, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38198567

RESUMO

Vinylogous urethane (VUO ) based polymer networks are widely used as catalyst-free vitrimers that show rapid covalent bond exchange at elevated temperatures. In solution, vinylogous ureas (VUN ) undergo much faster bond exchange than VUO and are highly dynamic at room temperature. However, this difference in reactivity is not observed in their respective dynamic polymer networks, as VUO and VUN vitrimers prepared herein with very similar macromolecular architectures show comparable stress relaxation and creep behavior. However, by using mixtures of VUO and VUN linkages within the same network, the dynamic reactions can be accelerated by an order of magnitude. The results can be rationalized by the effect of intermolecular hydrogen bonding, which is absent in VUO vitrimers, but is very pronounced for vinylogous urea moieties. At low concentrations of VUN , these hydrogen bonds act as catalysts for covalent bond exchange, while at high concentration, they provide a pervasive vinylogous urea - urethane (VU) network of strong non-covalent interactions, giving rise to phase separation and inhibiting polymer chain dynamics. This offers a straightforward design principle for dynamic polymer materials, showing at the same time the possible additive and synergistic effects of supramolecular and dynamic covalent polymer networks.

2.
Macromol Rapid Commun ; 44(8): e2300020, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36840963

RESUMO

Natural fiber-reinforced composites are gaining increased interest for their significantly reduced carbon footprint compared to conventional glass or carbon fiber-based counterparts. In this study, natural fibers are used in a resorcinol-based epoxy resin that is thermally reshapable at higher temperatures (>180 °C) by using fast exchanging siloxane bonds, catalyzed by 1,5,7-triazabicyclo[4.4.0]dec-5-ene. Stress relaxation times of only about 6 s at 220 °C can be reached. A resorcinol-based epoxy compound is selected because it can be derived from cellulose, opening ways for more sustainable and reshapable composite materials. In a last step of the research, the low viscosity vitrimer formulation (<200 mPa s) is applied to make a flax fiber-reinforced composite using an industrially relevant vacuum-assisted resin infusion process. A section of this composite is successfully reshaped, which allows for envisioning a second life for natural fiber-reinforced composites.


Assuntos
Linho , Siloxanas , Linho/química , Fibra de Carbono , Celulose , Viscosidade
3.
ACS Macro Lett ; 11(12): 1378-1383, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36454687

RESUMO

Pressure-sensitive adhesives (PSAs) made from norbornene-functionalized terpenoid-based monomers are reported as a possible alternative to the conventional petrochemically based PSAs. For this, tetrahydrogeranyl, menthyl, and isobornyl norbornenate monomers, with a renewable carbon content up to 72%, are synthesized and copolymerized via ring-opening metathesis polymerization (ROMP) with cyclooctadiene and 5-norbornene-2-carboxylic acid. ROMP enables a much faster and controlled polymerization process in comparison to free radical polymerization techniques when targeting high molecular weights and therefore unlocks a potential to design a unique class of PSA materials. The moduli at bonding and debonding frequencies of the obtained PSAs are plotted in the Chang classification system and are used to predict their adhesive performance. Tack and peel measurements indicate that the terpenoid-based norbornenate formulations show similar adhesive properties in comparison to the previously investigated acrylic counterparts.


Assuntos
Adesivos , Polímeros , Polimerização , Terpenos , Norbornanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA