Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 111(22): 3541-3553.e8, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657441

RESUMO

Dopamine neurons of the ventral tegmental area (VTADA) respond to food and social stimuli and contribute to both forms of motivation. However, it is unclear whether the same or different VTADA neurons encode these different stimuli. To address this question, we performed two-photon calcium imaging in mice presented with food and conspecifics and found statistically significant overlap in the populations responsive to both stimuli. Both hunger and opposite-sex social experience further increased the proportion of neurons that respond to both stimuli, implying that increasing motivation for one stimulus increases overlap. In addition, single-nucleus RNA sequencing revealed significant co-expression of feeding- and social-hormone-related genes in individual VTADA neurons. Taken together, our functional and transcriptional data suggest overlapping VTADA populations underlie food and social motivation.


Assuntos
Neurônios Dopaminérgicos , Área Tegmentar Ventral , Camundongos , Animais , Neurônios Dopaminérgicos/fisiologia , Alimentos , Motivação
2.
bioRxiv ; 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37293057

RESUMO

Dopamine neurons of the ventral tegmental area (VTA DA ) respond to food and social stimuli and contribute to both forms of motivation. However, it is unclear if the same or different VTA DA neurons encode these different stimuli. To address this question, we performed 2-photon calcium imaging in mice presented with food and conspecifics, and found statistically significant overlap in the populations responsive to both stimuli. Both hunger and opposite-sex social experience further increased the proportion of neurons that respond to both stimuli, implying that modifying motivation for one stimulus affects responses to both stimuli. In addition, single-nucleus RNA sequencing revealed significant co-expression of feeding- and social-hormone related genes in individual VTA DA neurons. Taken together, our functional and transcriptional data suggest overlapping VTA DA populations underlie food and social motivation.

4.
Cell Rep ; 39(7): 110756, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35584665

RESUMO

How are actions linked with subsequent outcomes to guide choices? The nucleus accumbens, which is implicated in this process, receives glutamatergic inputs from the prelimbic cortex and midline regions of the thalamus. However, little is known about whether and how representations differ across these input pathways. By comparing these inputs during a reinforcement learning task in mice, we discovered that prelimbic cortical inputs preferentially represent actions and choices, whereas midline thalamic inputs preferentially represent cues. Choice-selective activity in the prelimbic cortical inputs is organized in sequences that persist beyond the outcome. Through computational modeling, we demonstrate that these sequences can support the neural implementation of reinforcement-learning algorithms, in both a circuit model based on synaptic plasticity and one based on neural dynamics. Finally, we test and confirm a prediction of our circuit models by direct manipulation of nucleus accumbens input neurons.


Assuntos
Núcleo Accumbens , Tálamo , Animais , Camundongos , Vias Neurais/fisiologia , Neurônios/fisiologia , Núcleo Accumbens/fisiologia , Reforço Psicológico , Tálamo/fisiologia
5.
Nat Neurosci ; 25(3): 345-357, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35260863

RESUMO

A classic view of the striatum holds that activity in direct and indirect pathways oppositely modulates motor output. Whether this involves direct control of movement, or reflects a cognitive process underlying movement, remains unresolved. Here we find that strong, opponent control of behavior by the two pathways of the dorsomedial striatum depends on the cognitive requirements of a task. Furthermore, a latent state model (a hidden Markov model with generalized linear model observations) reveals that-even within a single task-the contribution of the two pathways to behavior is state dependent. Specifically, the two pathways have large contributions in one of two states associated with a strategy of evidence accumulation, compared to a state associated with a strategy of repeating previous choices. Thus, both the demands imposed by a task, as well as the internal state of mice when performing a task, determine whether dorsomedial striatum pathways provide strong and opponent control of behavior.


Assuntos
Corpo Estriado , Neostriado , Animais , Comportamento Animal , Comportamento de Escolha , Corpo Estriado/metabolismo , Camundongos , Movimento
6.
PLoS One ; 16(6): e0252345, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34086726

RESUMO

Calcium imaging has led to discoveries about neural correlates of behavior in subcortical neurons, including dopamine (DA) neurons. However, spike inference methods have not been tested in most populations of subcortical neurons. To address this gap, we simultaneously performed calcium imaging and electrophysiology in DA neurons in brain slices and applied a recently developed spike inference algorithm to the GCaMP fluorescence. This revealed that individual spikes can be inferred accurately in this population. Next, we inferred spikes in vivo from calcium imaging from these neurons during Pavlovian conditioning, as well as during navigation in virtual reality. In both cases, we quantitatively recapitulated previous in vivo electrophysiological observations. Our work provides a validated approach to infer spikes from calcium imaging in DA neurons and implies that aspects of both tonic and phasic spike patterns can be recovered.


Assuntos
Cálcio/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Potenciais de Ação/fisiologia , Algoritmos , Animais , Encéfalo/metabolismo , Sinalização do Cálcio/fisiologia , Condicionamento Clássico/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Camundongos
7.
Nature ; 570(7762): 509-513, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31142844

RESUMO

There is increased appreciation that dopamine neurons in the midbrain respond not only to reward1 and reward-predicting cues1,2, but also to other variables such as the distance to reward3, movements4-9 and behavioural choices10,11. An important question is how the responses to these diverse variables are organized across the population of dopamine neurons. Whether individual dopamine neurons multiplex several variables, or whether there are subsets of neurons that are specialized in encoding specific behavioural variables remains unclear. This fundamental question has been difficult to resolve because recordings from large populations of individual dopamine neurons have not been performed in a behavioural task with sufficient complexity to examine these diverse variables simultaneously. Here, to address this gap, we used two-photon calcium imaging through an implanted lens to record the activity of more than 300 dopamine neurons from the ventral tegmental area of the mouse midbrain during a complex decision-making task. As mice navigated in a virtual-reality environment, dopamine neurons encoded an array of sensory, motor and cognitive variables. These responses were functionally clustered, such that subpopulations of neurons transmitted information about a subset of behavioural variables, in addition to encoding reward. These functional clusters were spatially organized, with neighbouring neurons more likely to be part of the same cluster. Together with the topography between dopamine neurons and their projections, this specialization and anatomical organization may aid downstream circuits in correctly interpreting the wide range of signals transmitted by dopamine neurons.


Assuntos
Cognição , Neurônios Dopaminérgicos/fisiologia , Atividade Motora , Sensação , Área Tegmentar Ventral/citologia , Animais , Fenômenos Biomecânicos , Cálcio/metabolismo , Condicionamento Clássico , Sinais (Psicologia) , Tomada de Decisões , Feminino , Masculino , Camundongos , Recompensa , Navegação Espacial , Área Tegmentar Ventral/fisiologia , Realidade Virtual
8.
Front Behav Neurosci ; 12: 36, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29559900

RESUMO

The gradual accumulation of sensory evidence is a crucial component of perceptual decision making, but its neural mechanisms are still poorly understood. Given the wide availability of genetic and optical tools for mice, they can be useful model organisms for the study of these phenomena; however, behavioral tools are largely lacking. Here, we describe a new evidence-accumulation task for head-fixed mice navigating in a virtual reality (VR) environment. As they navigate down the stem of a virtual T-maze, they see brief pulses of visual evidence on either side, and retrieve a reward on the arm with the highest number of pulses. The pulses occur randomly with Poisson statistics, yielding a diverse yet well-controlled stimulus set, making the data conducive to a variety of computational approaches. A large number of mice of different genotypes were able to learn and consistently perform the task, at levels similar to rats in analogous tasks. They are sensitive to side differences of a single pulse, and their memory of the cues is stable over time. Moreover, using non-parametric as well as modeling approaches, we show that the mice indeed accumulate evidence: they use multiple pulses of evidence from throughout the cue region of the maze to make their decision, albeit with a small overweighting of earlier cues, and their performance is affected by the magnitude but not the duration of evidence. Additionally, analysis of the mice's running patterns revealed that trajectories are fairly stereotyped yet modulated by the amount of sensory evidence, suggesting that the navigational component of this task may provide a continuous readout correlated to the underlying cognitive variables. Our task, which can be readily integrated with state-of-the-art techniques, is thus a valuable tool to study the circuit mechanisms and dynamics underlying perceptual decision making, particularly under more complex behavioral contexts.

9.
Front Syst Neurosci ; 8: 165, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25249950

RESUMO

Gamma oscillations in cortex have been extensively studied with relation to behavior in both humans and animal models; however, their computational role in the processing of behaviorally relevant signals is still not clear. One oft-overlooked characteristic of gamma oscillations is their spatial distribution over the cortical space and the computational consequences of such an organization. Here, we advance the proposal that the spatial organization of gamma oscillations is of major importance for their function. The interaction of specific spatial distributions of oscillations with the functional topography of cortex enables select amplification of neuronal signals, which supports perceptual and cognitive processing.

10.
Neuron ; 77(2): 361-75, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23352171

RESUMO

Neural oscillations in the low-gamma range (30-50 Hz) have been implicated in neuronal synchrony, computation, behavior, and cognition. Abnormal low-gamma activity, hypothesized to reflect impaired synchronization, has been evidenced in several brain disorders. Thus, understanding the relations between gamma oscillations, neuronal synchrony and behavior is a major research challenge. We used a brain-machine interface (BMI) to train monkeys to specifically increase low-gamma power in selected sites of motor cortex to move a cursor and obtain a reward. The monkeys learned to robustly generate oscillatory gamma waves, which were accompanied by a dramatic increase of spiking synchrony of highly precise spatiotemporal patterns. The findings link volitional control of LFP oscillations, neuronal synchrony, and the behavioral outcome. Subjects' ability to directly modulate specific patterns of neuronal synchrony provides a powerful approach for understanding neuronal processing in relation to behavior and for the use of BMIs in a clinical setting.


Assuntos
Potenciais de Ação/fisiologia , Ondas Encefálicas/fisiologia , Interfaces Cérebro-Computador , Condicionamento Operante/fisiologia , Sincronização de Fases em Eletroencefalografia/fisiologia , Animais , Macaca fascicularis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...