Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Med Genomics ; 17(1): 30, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254109

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder which is characterized by the loss of both upper and lower motor neurons in the central nervous system. In a significant fraction of ALS cases - irrespective of family history- a genetic background may be identified. The genetic background of ALS shows a high variability from one ethnicity to another. The most frequent genetic cause of ALS is the repeat expansion of the C9orf72 gene. With the emergence of next-generation sequencing techniques and copy number alteration calling tools the focus in ALS genetics has shifted from disease causing genes and mutations towards genetic susceptibility and risk factors.In this review we aimed to summarize the most widely recognized and studied ALS linked repeat expansions and copy number variations other than the hexanucleotide repeat expansion in the C9orf72 gene. We compare and contrast their involvement and phenotype modifying roles in ALS among different populations.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Humanos , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Variações do Número de Cópias de DNA , Genes Reguladores , Fatores de Risco
2.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576165

RESUMO

Introduction: Previously, we demonstrated the degeneration of axon terminals in mice after repeated injections of blood sera from amyotrophic lateral sclerosis (ALS) patients with identified mutations. However, whether a similar treatment affects the cell body of motor neurons (MNs) remained unresolved. Methods: Sera from healthy individuals or ALS patients with a mutation in different ALS-related genes were intraperitoneally injected into ten-week-old male Balb/c mice (n = 3/serum) for two days. Afterward, the perikaryal calcium level was measured using electron microscopy. Furthermore, the optical disector method was used to evaluate the number of lumbar MNs. Results: The cytoplasmic calcium level of the lumbar MNs of the ALS-serum-treated mice, compared to untreated and healthy-serum-treated controls, was significantly elevated. While injections of the healthy serum did not reduce the number of MNs compared to the untreated control group, ALS sera induced a remarkable loss of MNs. Discussion: Similarly to the distant motor axon terminals, the injection of blood sera of ALS patients has a rapid degenerative effect on MNs. Analogously, the magnitude of the evoked changes was specific to the type of mutation; furthermore, the degeneration was most pronounced in the group treated with sera from ALS patients with a mutation in the chromosome 9 open reading frame 72 gene.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Cálcio/metabolismo , Neurônios Motores/metabolismo , Esclerose Lateral Amiotrófica/sangue , Animais , Modelos Animais de Doenças , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação/genética
3.
Int J Mol Sci ; 21(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756522

RESUMO

Previously, we demonstrated increased calcium levels and synaptic vesicle densities in the motor axon terminals (MATs) of sporadic amyotrophic lateral sclerosis (ALS) patients. Such alterations could be conferred to mice with an intraperitoneal injection of sera from these patients or with purified immunoglobulin G. Later, we confirmed the presence of similar alterations in the superoxide dismutase 1 G93A transgenic mouse strain model of familial ALS. These consistent observations suggested that calcium plays a central role in the pathomechanism of ALS. This may be further reinforced by completing a similar analytical study of the MATs of ALS patients with identified mutations. However, due to the low yield of muscle biopsy samples containing MATs, and the low incidence of ALS patients with the identified mutations, these examinations are not technically feasible. Alternatively, a passive transfer of sera from ALS patients with known mutations was used, and the MATs of the inoculated mice were tested for alterations in their calcium homeostasis and synaptic activity. Patients with 11 different ALS-related mutations participated in the study. Intraperitoneal injection of sera from these patients on two consecutive days resulted in elevated intracellular calcium levels and increased vesicle densities in the MATs of mice, which is comparable to the effect of the passive transfer from sporadic patients. Our results support the idea that the pathomechanism underlying the identical manifestation of the disease with or without identified mutations is based on a common final pathway, in which increasing calcium levels play a central role.


Assuntos
Esclerose Lateral Amiotrófica/genética , Axônios/metabolismo , Neurônios Motores/metabolismo , Superóxido Dismutase/genética , Vesículas Sinápticas/genética , Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/patologia , Animais , Axônios/patologia , Cálcio/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos/genética , Camundongos Transgênicos/metabolismo , Neurônios Motores/patologia , Mutação/genética , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Vesículas Sinápticas/patologia
4.
Front Genet ; 10: 732, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475037

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the degeneration of motor neurons. Genetic factors play a key role in ALS, and identifying variants that contribute to ALS susceptibility is an important step toward understanding the etiology of the disease. The frequency of protein altering variants in ALS patients has been extensively investigated in populations of different ethnic origin. To further delineate the genetic architecture of the Hungarian ALS patients, we aimed to detect potentially damaging variants in major and minor ALS genes and in genes related to other neurogenetic disorders. A combination of repeat-sizing of C9orf72 and next-generation sequencing (NGS) was used to comprehensively assess genetic variations in 107 Hungarian patients with ALS. Variants in major ALS genes were detected in 36.45% of patients. As a result of repeat sizing, pathogenic repeat expansions in the C9orf72 gene were detected in 10 patients (9.3%). According to the NGS results, the most frequently mutated genes were NEK1 (5.6%), NEFH, SQSTM1 (3.7%), KIF5A, SPG11 (2.8%), ALS2, CCNF, FUS, MATR3, TBK1, and UBQLN2 (1.9%). Furthermore, potentially pathogenic variants were found in GRN and SIGMAR1 genes in single patients. Additional 33 novel or rare known variants were detected in minor ALS genes, as well as 48 variants in genes previously linked to other neurogenetic disorders. The latter finding supports the hypothesis that common pathways in different neurodegenerative diseases may contribute to the development of ALS. While the disease-causing role of several variants identified in this study has previously been established, other variants may show reduced penetrance or may be rare benign variants. Our findings highlight the necessity for large-scale multicenter studies on ALS patients to gain a more accurate view of the genetic pattern of ALS.

5.
Int J Mol Sci ; 20(10)2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31130623

RESUMO

In an earlier study, signs of commencing degeneration of spinal motor neurons were induced in mice with short-term intraperitoneal injections of immunoglobulin G (IgG) taken from patients with amyotrophic lateral sclerosis (ALS). Since in that study, neither weakness nor loss of motor neurons was noted, to test whether the ALS IgG in this paradigm has the potential to evoke relentless degeneration of motor neurons, treatment with repeated injections over a longer period was carried out. Mice were systematically injected intraperitoneally with serum taken from ALS patients over a 75-day period. At selected time points, the isometric force of the limbs, number of spinal motor neurons and their intracellular calcium levels were determined. Furthermore, markers of glial activation and the motoneuronal uptake of human IgG were monitored. During this period, gliosis and progressive motoneuronal degeneration developed, which led to gradual loss of spinal motor neurons, more than 40% at day 21, along with decreasing muscle strength in the limbs. The inclusion-like accumulation of IgG appeared in the perikarya with the increase of intracellular calcium in the cell bodies and motor nerve terminals. Our results demonstrate that ALS serum can transfer motor neuron disease to mice.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Doença dos Neurônios Motores/metabolismo , Neurônios Motores/patologia , Soro/metabolismo , Esclerose Lateral Amiotrófica/sangue , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/sangue , Imunoglobulina G/metabolismo , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Doença dos Neurônios Motores/patologia , Neurônios Motores/metabolismo
6.
Brain Behav ; 9(6): e01293, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31025543

RESUMO

INTRODUCTION: Mutations in the angiogenin (ANG) gene are known to be associated with both familial and sporadic amyotrophic lateral sclerosis (ALS). The majority of disease-causing mutations of ANG result in loss of either ribonucleolytic activity, nuclear translocation activity or both. METHODS: We sequenced ANG gene from a total of 136 sporadic ALS patients and 112 healthy controls of Hungarian origin. To elucidate the role of the R33W mutation in the disease mechanism, computational, and functional analyses were performed. RESULTS: Mutation screening revealed a mutation located in the signal peptide (M-24I) and two mutations that affect the mature protein (R33W, V103I). The R33W mutation, which has not been previously detected in ALS patients, affects the key amino acid of the nuclear translocation signal of the ANG protein. Molecular dynamics simulations suggested that the R33W mutation results in partial loss of ribonucleolytic activity and reduced nuclear translocation activity. The ribonucleolytic assay and nuclear translocation assay of the R33W ANG protein confirmed the molecular dynamics results. CONCLUSIONS: In the Hungarian ALS population, the observed frequency of ANG mutations was 2.9%, which is higher than previously reported for sporadic cohorts. The evidence from computational and functional analyses support the deleterious effect of the novel R33W variant detected in this study.


Assuntos
Esclerose Lateral Amiotrófica/genética , Mutação/genética , Ribonuclease Pancreático/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Hungria/etnologia , Masculino , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Translocação Genética/genética
7.
Biochim Biophys Acta Mol Basis Dis ; 1863(7): 1739-1748, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28528135

RESUMO

Increased intracellular calcium (Ca), which might be the consequence of an excess influx through Ca-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, plays a crucial role in degeneration of motor neurons. Previously we demonstrated that the presymptomatic application of AMPA receptor antagonist, talampanel, could reduce Ca elevation in spinal motor neurons of mice carrying the G93A mutation of superoxide dismutase 1 (SOD1), modeling amyotrophic lateral sclerosis (ALS). It remained to be examined whether the remote, functionally semi-autonomous motor axon terminals could be rescued from the Ca overload, or if the terminals, where the degeneration possibly starts, already experience intractable changes at early time points. Thus using electron microscopic techniques, we measured the Ca level of motor axon terminals in the interosseus muscle of the SOD1 mutant animals, which are prototypes of vulnerable nerve endings in ALS. In line with the results obtained in the perikarya, talampanel treatment could reduce Ca increase evoked by the presence of mutant SOD1 in the axon terminals if the treatment was started presymptomatically but not at an early symptomatic stage. We also tested the Ca level in the cell bodies and axon terminals of the oculomotor neurons, which are resistant to the disease. Neither Ca increase, nor talampanel effect could be demonstrated at either time point. This is consistent with the observations that oculomotor neurons contain increased level of Ca buffer, which could reduce excess Ca load, and they also express glutamate receptor subunit type 2, which renders AMPA receptors impermeable to Ca.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Benzodiazepinas/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores de AMPA/antagonistas & inibidores , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Terminações Pré-Sinápticas/patologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
8.
Brain Behav ; 7(4): e00669, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28413711

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the degeneration of the motor neurons. To date, 126 genes have been implicated in ALS. Therefore, the heterogenous genetic background of ALS requires comprehensive genetic investigative approaches. METHODS: In this study, DNA from 28 Hungarian ALS patients was subjected to targeted high-throughput sequencing of the coding regions of three Mendelian ALS genes: FUS, SETX, and C9ORF72. RESULTS: A novel heterozygous missense mutation (c.791A>G, p.N264S) of the SETX gene was identified in a female patient presenting an atypical ALS phenotype, including adult onset and lower motor neuron impairment. No further mutations were detected in the other Mendelian ALS genes investigated. CONCLUSION: Our study contributes to the understanding of the genetic and phenotypic diversity of motor neuron diseases (MNDs). Our results also suggest that the elucidation of the genetic background of MNDs requires a complex approach, including the screening of both Mendelian and non-Mendelian genes.


Assuntos
Esclerose Lateral Amiotrófica/genética , Mutação de Sentido Incorreto , RNA Helicases/genética , Idoso , Proteína C9orf72 , DNA Helicases , Feminino , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Enzimas Multifuncionais , Fenótipo , Proteínas/genética , Proteína FUS de Ligação a RNA/genética
9.
Neurobiol Aging ; 53: 195.e1-195.e5, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28222900

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of motor neurons. To date, more than 20 genes have been implicated in ALS, and of these, the 2 most frequently mutated are the superoxide dismutase 1 (SOD1) gene and the chromosome 9 open reading frame 72 (C9ORF72) gene. In this study, we aimed to investigate the contribution of these 2 Mendelian genes to the development of the disease in Hungarian ALS patients (n = 66). Direct sequencing of the SOD1 gene revealed a novel (p.Lys91ArgfsTer8) and 3 recurrent heterozygous mutations (p.Val14Met, p.Asp90Ala, and p.Leu144Phe) in 5 patients. The novel p.Lys91ArgfsTer8 mutation led to a frameshift causing the addition of 8 new amino acids, including a premature stop codon at position 99. The GGGGCC hexanucleotide repeat expansion of the C9ORF72 gene was present in 1 ALS patient. This study represents the first genetic analysis of 2 major ALS causative genes in a cohort of Hungarian ALS patients and contributes to the further understanding of the genetic and phenotypic diversity of ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Mutação , Superóxido Dismutase-1/genética , Adulto , Idoso , Estudos de Coortes , Expansão das Repetições de DNA , Feminino , Humanos , Hungria , Masculino , Pessoa de Meia-Idade
10.
Biochem Biophys Res Commun ; 483(4): 1031-1039, 2017 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-27545602

RESUMO

Amyotrophic lateral sclerosis is an incurable, relentlessly progressive disease primarily affecting motor neurons. The cause of the disease, except for the mutations identified in a small fraction of patients, is unknown. The major mechanisms contributing to the degeneration of motor neurons have already been disclosed and characterized, including excitotoxicity, oxidative stress, mitochondrial dysfunction, and immune/inflammatory processes. During the progression of the disease these toxic processes are not discrete, but each facilitates the deleterious effect of the other. However, due to their common reciprocal calcium dependence, calcium ions may act as a common denominator and through a positive feedback loop may combine the individual pathological processes into a unified escalating mechanism of neuronal destruction. This mini-review provides an overview of the mutual calcium dependence of the major toxic mechanisms associated with amyotrophic lateral sclerosis.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Cálcio/metabolismo , Esclerose Lateral Amiotrófica/patologia , Humanos , Neurônios Motores/metabolismo , Estresse Oxidativo , Receptores de AMPA/metabolismo
11.
J Hum Genet ; 62(2): 329-333, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27734837

RESUMO

AARS2 gene (NM_020745.3) mutations result in two different phenotypic diseases: infantile mitochondrial cardiomyopathy and late-onset leukoencephalopathy. The patient's first symptoms appeared at the age of 18 years with behavioral changes and psychiatric problems. Some years later, extrapyramidal symptoms, cognitive impairment, nystagmus, dysarthria and pyramidal symptoms also developed. The brain magnetic resonance imaging (MRI) indicated extensive white matter abnormalities. The diagnosis of AARS2 gene mutations causing leukodystrophy was confirmed by genetic testing. Segregation analysis confirmed the compound heterozygous state of the patient. Histological examination of the biopsy did not prove specific pathological alterations. The clinical phenotype of our patient was compared with seven previously described patients suffering from leukoencephalopathy caused by AARS2 mutations. We have documented a new, nonsense AARS2 gene mutation (c.578T>G, p.Leu193*) and a known missense mutation (c.595C>T, p.Arg199Cys) associated with leukoencephalopathy in a male patient. Clinical features, imaging characteristics and genetic testing are presented, and histological data from an AARS2-related leukodystrophy patient are described for the first time.


Assuntos
Alanina-tRNA Ligase/genética , Leucoencefalopatias/diagnóstico , Leucoencefalopatias/genética , Mutação de Sentido Incorreto/genética , Substância Branca/anormalidades , Adulto , Transtornos Cognitivos/genética , Feminino , Testes Genéticos , Humanos , Leucoencefalopatias/patologia , Imageamento por Ressonância Magnética , Masculino , Fenótipo , Insuficiência Ovariana Primária/genética
12.
CNS Neurol Disord Drug Targets ; 16(3): 356-367, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28017131

RESUMO

BACKGROUND: Motoneurons with naturally elevated calcium binding protein content, such as parvalbumin, are more resistant against injury. Furthermore, increase of intracellular calcium, which plays a pivotal role in injury of neurons, could be moderated by elevating their calcium binding proteins. OBJECTIVE: To test whether by elevating parvalbumin content of motoneurons, activation of neighboring microglial cells, a robust component of the inflammatory reaction after injury, could be influenced. METHODS: Mice overexpressing neuronal parvalbumin were derived and the spinal motoneurons were challenged by cutting the sciatic nerve. At postoperative days 1, 4, 7, 14 and 21 the change of the chemokine ligand 2 immunostaining in the motoneurons and the activation of microglial cells, measured as alterations in CD11b immunostaining were determined. Calcium level of motoneurons was tested electron microscopically at postoperative day 7. RESULTS: After axotomy, increased level of chemokine ligand 2 was detected in the lumbar motoneurons. The staining intensity reached its maximum at day 7 and decayed faster in transgenic mice compared to controls. Microglial activation around motoneurons attenuated faster in parvalbumin overexpressing mice, too, but the decrease of microglial activation was delayed compared to the decline of the chemokine ligand 2 signal. At the time when the microglial reaction peaked, no intracellular calcium increase was detected in the motoneurons of transgenic mice, in contrast to the twofold increase in wild type animals. CONCLUSION: Increased calcium buffering capacity, which augments resistance of motoneurons against calcium-mediated injury, leads to earlier termination of motoneuronal emission of CCL2 followed by a reduction of neighboring microglial activation after axotomy.


Assuntos
Cálcio/metabolismo , Quimiocina CCL2/metabolismo , Regulação da Expressão Gênica/fisiologia , Microglia/metabolismo , Neurônios Motores/metabolismo , Parvalbuminas/metabolismo , Neuropatia Ciática/patologia , Análise de Variância , Anestésicos/farmacologia , Animais , Antígenos CD/metabolismo , Axotomia/efeitos adversos , Modelos Animais de Doenças , Etanol/análogos & derivados , Etanol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Microscopia Eletrônica , Neurônios Motores/ultraestrutura , Parvalbuminas/genética , Parvalbuminas/ultraestrutura , Neuropatia Ciática/metabolismo , Fatores de Tempo
13.
J Neuroinflammation ; 13(1): 121, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27220674

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that involves the selective loss of the upper and lower motor neurons (MNs). Neuroinflammation has been implicated in the pathogenesis of the sporadic form of the disease. We earlier developed immune-mediated animal models of ALS and demonstrated humoral and cellular immune reactions in the nervous system and in the sera of patients and animals. The accumulation of immunoglobulin G (IgG), an elevated intracellular level of calcium, ultrastructural alterations in the MNs, and activation of the microglia were noted in the spinal cord of ALS patients. Similar alterations developed in mice inoculated intraperitoneally with IgG from ALS patients or from an immune-mediated goat model. METHODS: We have now examined whether the intraperitoneal injection of mice with IgG from sporadic ALS patients or from immunized goats with the homogenate of the anterior horn of the bovine spinal cord is associated with changes in the pro-inflammatory (TNF-α and IL-6) and anti-inflammatory (IL-10) cytokines in the spinal cord and serum of the mice. The levels of cytokines were measured by ELISA. RESULTS: Intraperitoneally administered IgG from the ALS patients induced subclinical signs of MN disease, while the injection of IgG from immunized goats resulted in a severe respiratory dysfunction and limb paralysis 24 h after the injections. Significantly increased levels of TNF-α and IL-10 were detected in the spinal cord of the mice injected with the human ALS IgG. The level of IL-6 increased primarily in the serum. The IgG from the immunized goats induced highly significant increases in the levels of all three cytokines in the serum and the spinal cord of mice. CONCLUSIONS: Our earlier experiments had proved that when ALS IgG or IgG from immune-mediated animal models was inoculated into mice, it was taken up in the MNs and had the ability to initiate damage in them. The pathological process was paralleled by microglia recruitment and activation in the spinal cord. The present experiment revealed that these forms of IgG cause significant increases in certain cytokine levels locally in the spinal cord and in the serum of the inoculated mice. These results suggest that IgG directed to the MNs may be an initial element in the damage to the MNs both in human ALS and in its immune-mediated animal models.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Citocinas/metabolismo , Imunoglobulina G/administração & dosagem , Medula Espinal/metabolismo , Esclerose Lateral Amiotrófica/imunologia , Análise de Variância , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Cabras , Humanos , Injeções Intraperitoneais , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Atividade Motora/efeitos dos fármacos , Neurônios Motores/patologia , Neurônios Motores/ultraestrutura , Miastenia Gravis Autoimune Experimental/sangue , Miastenia Gravis Autoimune Experimental/imunologia , Miastenia Gravis Autoimune Experimental/patologia , Fator de Necrose Tumoral alfa/metabolismo
15.
PLoS One ; 9(2): e89596, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586901

RESUMO

Amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disorder, is characterized by the progressive and selective loss of upper and lower motor neurons. Diagnosis of this disorder is based on clinical assessment, and the average survival time is less than 3 years. Injections of IgG from ALS patients into mice are known to specifically mark motor neurons. Moreover, IgG has been found in upper and lower motor neurons in ALS patients. These results led us to perform a case-control study using human protein microarrays to identify the antibody profiles of serum samples from 20 ALS patients and 20 healthy controls. We demonstrated high levels of 20 IgG antibodies that distinguished the patients from the controls. These findings suggest that a panel of antibodies may serve as a potential diagnostic biomarker for ALS.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/imunologia , Anticorpos/sangue , Anticorpos/imunologia , Biomarcadores/sangue , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Neurônios Motores/imunologia , Adolescente , Adulto , Idoso , Esclerose Lateral Amiotrófica/diagnóstico , Animais , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Prognóstico , Análise Serial de Proteínas , Adulto Jovem
16.
Amyotroph Lateral Scler ; 12(5): 340-4, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21623665

RESUMO

We tested the efficacy of treatment with talampanel in a mutant SOD1 mouse model of ALS by measuring intracellular calcium levels and loss of spinal motor neurons. We intended to mimic the clinical study; hence, treatment was started when the clinical symptoms were already present. The data were compared with the results of similar treatment started at a presymptomatic stage. Transgenic and wild-type mice were treated either with talampanel or with vehicle, starting in presymptomatic or symptomatic stages. The density of motor neurons was determined by the physical disector, and their intracellular calcium level was assayed electron microscopically. Results showed that motor neurons in the SOD1 mice exhibited an elevated calcium level, which could be reduced, but not restored, with talampanel only when the treatment was started presymptomatically. Treatment in either presymptomatic or symptomatic stages failed to rescue the motor neurons. We conclude that talampanel reduces motoneuronal calcium in a mouse model of ALS, but its efficacy declines as the disease progresses, suggesting that medication initiation in the earlier stages of the disease might be more effective.


Assuntos
Benzodiazepinas/administração & dosagem , Cálcio/metabolismo , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Superóxido Dismutase/genética , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Superóxido Dismutase/biossíntese , Superóxido Dismutase-1
17.
J Comp Neurol ; 518(11): 1946-61, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20394052

RESUMO

Motor neurons that exhibit differences in vulnerability to degeneration have been identified in motor neuron disease and in its animal models. The oculomotor and hypoglossal neurons are regarded as the prototypes of the resistant and susceptible cell types, respectively. Because an increase in the level of intracellular calcium has been proposed as a feature amplifying degenerative processes, we earlier studied the calcium increase in these motor neurons after axotomy in Balb/c mice and demonstrated a correlation between the susceptibility to degeneration and the intracellular calcium increase, with an inverse relation with the calcium buffering capacity, characterized by the parvalbumin or calbindin-D(28k) content. Because the differential susceptibility of the cells might also be attributed to their different cellular environments, in the present experiments, with the aim of verifying directly that a higher calcium buffering capacity is indeed responsible for the enhanced resistance, motor neurons were studied in their original milieu in mice with a genetically increased parvalbumin level. The changes in intracellular calcium level of the hypoglossal and oculomotor neurons after axotomy were studied electron microscopically at a 21-day interval after axotomy, during which time no significant calcium increase was detected in the hypoglossal motor neurons, the response being similar to that of the oculomotor neurons. The hypoglossal motor neurons of the parental mice, used as positive controls, exhibited a transient, significant elevation of calcium. These data provide more direct evidence of the protective role of parvalbumin against the degeneration mediated by a calcium increase in the acute injury of motor neurons.


Assuntos
Axotomia , Cálcio/metabolismo , Nervo Hipoglosso/citologia , Neurônios Motores/metabolismo , Parvalbuminas/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neurônios Motores/patologia , Neurônios Motores/ultraestrutura , Fármacos Neuroprotetores/metabolismo , Nervo Oculomotor/citologia , Parvalbuminas/genética
18.
J Comp Neurol ; 499(1): 17-32, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16958104

RESUMO

Motor neurons with different susceptibility to degeneration have been identified in amyotrophic lateral sclerosis (ALS). Increase of intracellular calcium has been proposed as a mediator, amplifying the damage through a positive feedback of the known pathological processes. Accordingly, the potential of motor neurons to limit calcium increases during injury might be proportional to their viability. A basic mechanism of reducing calcium amplitudes depends on the calcium-buffering capacity, determined by the calcium-binding protein content. In this study, oculomotor and hypoglossal neurons, prototypes of resistant and vulnerable motor neurons in ALS were examined in axotomy experiments. Total calcium-, parvalbumin-, and calbindin-D28k levels of motor neurons of adult mice were characterized by electron microscopic histochemistry and light microscopic immunostaining. In hypoglossal neurons, compared with oculomotor neurons, larger and more enduring increases of calcium were detected. The perikarya of hypoglossal neurons remained immunonegative for both parvalbumin and calbindin-D28k. Qualitatively, no major cell loss was noted after axotomy, but a decreased neuronal marker staining at days 1-14 suggested a reversible injury of hypoglossal neurons. Oculomotor neurons were not stained for calbindin-D28k but stained for parvalbumin in control conditions, staining which increased at postoperative days 7-14 before returning to baseline. Neuronal marker staining did not change in these cells during the observed period. The higher level of parvalbumin in resistant motor neurons and their ability to up-regulate parvalbumin after injury, paralleled by a smaller increase of intracellular calcium suggest that parvalbumin may have a protective effect in these cells.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Lateralidade Funcional/fisiologia , Nervo Hipoglosso/fisiologia , Neurônios Motores/metabolismo , Nervo Oculomotor/fisiologia , Animais , Axotomia/métodos , Calbindina 1 , Calbindinas , Regulação da Expressão Gênica/fisiologia , Imuno-Histoquímica/métodos , Masculino , Bulbo/citologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Imunoeletrônica/métodos , Neurônios Motores/ultraestrutura , Parvalbuminas/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Coloração e Rotulagem/métodos , Fatores de Tempo
19.
Acta Neuropathol ; 109(6): 567-75, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15933871

RESUMO

4-Hydroxynonenal (4-HNE), a major lipid peroxidation product, induces oxidative stress, acts as an autonomous effector of cell death in motor neuron hybrid cell cultures, and is elevated in the cerebrospinal fluid (CSF) of patients with amyotrophic lateral sclerosis (ALS). Elevation of the total intracellular calcium has also been demonstrated in motor axon terminals of ALS patients as well as in spinal motor neurons of animal models of familial and sporadic ALS. Since the association of intracellular calcium and oxidative stress has been suggested in ALS, the in vivo effect of intrathecally administered 4-HNE on the motor neuronal calcium level was examined in the spinal cord of rats. After 12 days of treatment, total intracellular calcium was assayed by electron microscopic histochemistry using the oxalate-pyroantimonate method. Morphology of spinal motor neurons was characterized by light and electron microscopy. In rats, 4-HNE treatment induced a mild impairment of gait, elevation of 4-HNE in the CSF, loss of spinal motor neurons, and reduction of total calcium in the surviving, structurally intact motor neurons. 4-HNE could only cause a lesion if glutathione synthesis was concomitantly inhibited in the animals. The results suggest that upstream components of the oxidative injury in relation to lipid peroxidation are necessary to compromise the glutathione system in ALS, allowing an increase of 4-HNE in the CSF, which further aggravates the primary oxidative lesion. The reduced intracellular calcium in the surviving motor neurons with no morphological features of degeneration may reflect an impaired ionic homeostasis, which may indicate a residual damage of an incomplete degenerative process.


Assuntos
Aldeídos/toxicidade , Cálcio/análise , Inibidores de Cisteína Proteinase/toxicidade , Neurônios Motores/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Animais , Cálcio/metabolismo , Feminino , Líquido Intracelular/química , Líquido Intracelular/efeitos dos fármacos , Masculino , Microscopia Eletrônica de Transmissão , Microscopia Eletrônica de Transmissão por Filtração de Energia , Neurônios Motores/patologia , Neurônios Motores/ultraestrutura , Transtornos dos Movimentos/etiologia , Doenças Neurodegenerativas/fisiopatologia , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/patologia
20.
Neuroreport ; 15(11): 1715-8, 2004 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-15257133

RESUMO

Immunohistochemical techniques revealed a significant increase of poly(ADP-ribose) polymerase (PARP)-containing nuclei in the dopaminergic neurons of the substantia nigra (SN) in Parkinson disease and in diffuse Lewy body disease as compared with a group of patients with other neurodegenerative diseases and normal controls. The nuclear translocation of nuclear factor kappa B (NF-kappa B) was also noted in the same cells. The over-activation of PARP and the transcriptional activation of NF-kappa B can contribute to the pathomechanism of the disease specific lesion of the neurons in the SN. However, in another subgroup of dopaminergic cells of the SN an increased parvalbumin content was detected reflecting a natural protective mechanism against the putative increase of intracellular calcium caused by excitotoxic injury and oxidative stress.


Assuntos
NF-kappa B/biossíntese , Doença de Parkinson/enzimologia , Parvalbuminas/biossíntese , Poli(ADP-Ribose) Polimerases/biossíntese , Humanos , NF-kappa B/análise , Doença de Parkinson/metabolismo , Parvalbuminas/análise , Poli(ADP-Ribose) Polimerases/análise , Substância Negra/química , Substância Negra/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...