Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Nano Mater ; 4(6): 6299-6305, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34240009

RESUMO

Technological advances in membrane technology, catalysis, and electrochemical energy storage require the fabrication of controlled pore structures at ever smaller length scales. It is therefore important to develop processes allowing for the fabrication of materials with controlled submicron porous structures. We propose a combination of colloidal lithography and chemical vapor deposition of carbon nanotubes to create continuous straight pores with diameters down to 100 nm in structures with thicknesses of more than 300 µm. These structures offer unique features, including continuous and parallel pores with aspect ratios in excess of 3000, a low pore tortuosity, good electrical conductivity, and electrochemical stability. We demonstrate that these structures can be used in Li-ion batteries by coating the carbon nanotubes with Si as an active anode material.

2.
J Phys Chem C Nanomater Interfaces ; 125(9): 4955-4967, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33763164

RESUMO

Li-O2 batteries offer a high theoretical discharge capacity due to the formation of light discharged species such as Li2O2, which fill the porous positive electrode. However, in practice, it is challenging to reach the theoretical capacity and completely utilize the full electrode pore volume during discharge. With the formation of discharge products, the porous medium evolves, and the porosity and tortuosity factor of the positive electrode are altered through shrinkage and clogging of pores. A pore shrinks as solid discharge products accumulate, the pore clogging when it is filled (or when access is blocked). In this study, we investigate the structural evolution of the positive electrode through a combination of experimental and computational techniques. Pulsed field gradient nuclear magnetic resonance results show that the electrode tortuosity factor changes much faster than suggested by the Bruggeman relation (an equation that empirically links the tortuosity factor to the porosity) and that the electrolyte solvent affects the tortuosity factor evolution. The latter is ascribed to the different abilities of solvents to dissolve reaction intermediates, which leads to different discharge product particle sizes: on discharging using 0.5 M LiTFSI in dimethoxyethane, the tortuosity factor increases much faster than for discharging in 0.5 M LiTFSI in tetraglyme. The correlation between a discharge product size and tortuosity factor is studied using a pore network model, which shows that larger discharge products generate more pore clogging. The Knudsen diffusion effect, where collisions of diffusing molecules with pore walls reduce the effective diffusion coefficients, is investigated using a kinetic Monte Carlo model and is found to have an insignificant impact on the effective diffusion coefficient for molecules in pores with diameters above 5 nm, i.e., most of the pores present in the materials investigated here. As a consequence, pore clogging is thought to be the main origin of tortuosity factor evolution.

3.
Nanoscale ; 12(8): 5196-5208, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32073024

RESUMO

In this work we show for the first time that a continuous plasma process can synthesize materials from bulk industrial powders to produce hierarchical structures for energy storage applications. The plasma production process's unique advantages are that it is fast, inexpensive, and scalable due to its high energy density that enables low-cost precursors. The synthesized hierarchical material is comprised of iron oxide and aluminum oxide aggregate particles and carbon nanotubes grown in situ from the iron particles. New aerosol-based methods were used for the first time on a battery material to characterize aggregate and primary particle morphologies, while showing good agreement with observations from TEM measurements. As an anode for lithium ion batteries, a reversible capacity of 870 mA h g-1 based on metal oxide mass was observed and the material showed good recovery from high rate cycling. The high rate of material synthesis (∼10 s residence time) enables this plasma hierarchical material synthesis platform to be optimized as a means for energetic material production for the global energy storage material supply chain.

4.
Small ; 15(45): e1901201, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31544336

RESUMO

Controlling the arrangement and interface of nanoparticles is essential to achieve good transfer of charge, heat, or mechanical load. This is particularly challenging in systems requiring hybrid nanoparticle mixtures such as combinations of organic and inorganic materials. This work presents a process to coat vertically aligned carbon nanotube (CNT) forests with metal oxide nanoparticles using microwave-assisted hydrothermal synthesis. Hydrothermal processes normally damage delicate CNT forests, which is addressed here by a combination of lithographic patterning, transfer printing, and reduction of the synthesis time. This process is applied for the fabrication of structured Li-ion battery (LIB) electrodes where the aligned CNTs provide a straight electron transport path through the electrode and the hydrothermal coating process is used to coat the CNTs with conversion anode materials for LIBs. These nanoparticles are anchored on the surface of the CNTs and batteries fabricated following this process show a fourfold longer cyclability. Finally, this process is used to create thick electrodes (350 µm) with a gravimetric capacity of over 900 mAh g-1 .

5.
Nano Lett ; 19(1): 228-234, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30521349

RESUMO

The benefits of nanosize active particles in Li-ion batteries are currently ambiguous. They are acclaimed for enhancing the cyclability of certain electrode materials and for improving rate performance. However, at the same time, nanoparticles are criticized for causing side reactions as well as for their low packing density and, therefore, poor volumetric battery performance. This paper demonstrates for the first time that self-assembly can be used to pack nanoparticles into dense battery electrodes with up to 4-fold higher volumetric capacities. Furthermore, despite the dense packing of the self-assembled electrodes, they retain a higher volumetric capacity than randomly dispersed nanoparticles up to rates of 5 C. Finally, we did not observe substential degradation in capacity after 1000 cycles, and post-mortem analysis indicates that the self-assembled structures are maintained during cycling. Therefore, the proposed self-assembled electrodes profit from the advantages of nanostructured battery materials without compromising the volumetric performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...