Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 13267, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185876

RESUMO

The gravitational force has been constant throughout Earth's evolutionary history. Since the cell nucleus is subjected to permanent forces induced by Earth's gravity, we addressed the question, if gene expression homeostasis is constantly shaped by the gravitational force on Earth. We therefore investigated the transcriptome in force-free conditions of microgravity, determined the time frame of initial gravitational force-transduction to the transcriptome and assessed the role of cation channels. We combined a parabolic flight experiment campaign with a suborbital ballistic rocket experiment employing the human myelomonocytic cell line U937 and analyzed the whole gene transcription by microarray, using rigorous controls for exclusion of effects not related to gravitational force and cross-validation through two fully independent research campaigns. Experiments with the wide range ion channel inhibitor SKF-96365 in combination with whole transcriptome analysis were conducted to study the functional role of ion channels in the transduction of gravitational forces at an integrative level. We detected profound alterations in the transcriptome already after 20 s of microgravity or hypergravity. In microgravity, 99.43% of all initially altered transcripts adapted after 5 min. In hypergravity, 98.93% of all initially altered transcripts adapted after 75 s. Only 2.4% of all microgravity-regulated transcripts were sensitive to the cation channel inhibitor SKF-96365. Inter-platform comparison of differentially regulated transcripts revealed 57 annotated gravity-sensitive transcripts. We assume that gravitational forces are rapidly and constantly transduced into the nucleus as omnipresent condition for nuclear and chromatin structure as well as homeostasis of gene expression.


Assuntos
Núcleo Celular/genética , Gravitação , Transcriptoma/genética , Núcleo Celular/fisiologia , Humanos , Hipergravidade , Voo Espacial , Células U937 , Ausência de Peso
2.
NPJ Microgravity ; 3: 22, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28868355

RESUMO

In the last decades, a plethora of in vitro studies with living human cells contributed a vast amount of knowledge about cellular and molecular effects of microgravity. Previous studies focused mostly on the identification of gravity-responsive genes, whereas a multi-platform analysis at an integrative level, which specifically evaluates the extent and robustness of transcriptional response to an altered gravity environment was not performed so far. Therefore, we investigated the stability of gene expression response in non-activated human Jurkat T lymphocytic cells in different gravity environments through the combination of parabolic flights with a suborbital ballistic rocket and 2D clinostat and centrifuge experiments, using strict controls for excluding all possible other factors of influence. We revealed an overall high stability of gene expression in microgravity and identified olfactory gene expression in the chromosomal region 11p15.4 as particularly robust to altered gravity. We identified that classical reference genes ABCA5, GAPDH, HPRT1, PLA2G4A, and RPL13A were stably expressed in all tested gravity conditions and platforms, while ABCA5 and GAPDH were also known to be stably expressed in U937 cells in all gravity conditions. In summary, 10-20% of all transcripts remained totally unchanged in any gravitational environment tested (between 10-4 and 9 g), 20-40% remained unchanged in microgravity (between 10-4 and 10-2 g) and 97-99% were not significantly altered in microgravity if strict exclusion criteria were applied. Therefore, we suppose a high stability of gene expression in microgravity. Comparison with other stressors suggests that microgravity alters gene expression homeostasis not stronger than other environmental factors.

3.
Sci Rep ; 7(1): 5204, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701719

RESUMO

We investigated the dynamics of immediate and initial gene expression response to different gravitational environments in human Jurkat T lymphocytic cells and compared expression profiles to identify potential gravity-regulated genes and adaptation processes. We used the Affymetrix GeneChip® Human Transcriptome Array 2.0 containing 44,699 protein coding genes and 22,829 non-protein coding genes and performed the experiments during a parabolic flight and a suborbital ballistic rocket mission to cross-validate gravity-regulated gene expression through independent research platforms and different sets of control experiments to exclude other factors than alteration of gravity. We found that gene expression in human T cells rapidly responded to altered gravity in the time frame of 20 s and 5 min. The initial response to microgravity involved mostly regulatory RNAs. We identified three gravity-regulated genes which could be cross-validated in both completely independent experiment missions: ATP6V1A/D, a vacuolar H + -ATPase (V-ATPase) responsible for acidification during bone resorption, IGHD3-3/IGHD3-10, diversity genes of the immunoglobulin heavy-chain locus participating in V(D)J recombination, and LINC00837, a long intergenic non-protein coding RNA. Due to the extensive and rapid alteration of gene expression associated with regulatory RNAs, we conclude that human cells are equipped with a robust and efficient adaptation potential when challenged with altered gravitational environments.


Assuntos
Regulação da Expressão Gênica , Voo Espacial , Transcriptoma , Ausência de Peso , Humanos , Células Jurkat , Família Multigênica , Linfócitos T
4.
Biomed Res Int ; 2015: 363575, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25654098

RESUMO

Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.


Assuntos
Regulação da Expressão Gênica , Genes , Gravitação , Monócitos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Humanos , Análise em Microsséries , Padrões de Referência , Voo Espacial , Células U937
5.
Biomed Res Int ; 2015: 538786, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25654110

RESUMO

Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells.


Assuntos
Molécula 1 de Adesão Intercelular/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Ausência de Peso , Animais , Morte Celular , Diferenciação Celular , Regulação para Baixo , Citometria de Fluxo , Humanos , Molécula 1 de Adesão Intercelular/genética , Células Matadoras Naturais/citologia , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rotação , Voo Espacial , Células U937 , Simulação de Ausência de Peso
6.
Cell Physiol Biochem ; 35(3): 1034-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25661802

RESUMO

BACKGROUND/AIMS: Several limiting factors for human health and performance in microgravity have been clearly identified arising from the immune system, and substantial research activities are required in order to provide the basic information for appropriate integrated risk management. The gravity-sensitive nature of cells of the immune system renders them an ideal biological model in search for general gravity-sensitive mechanisms and to understand how the architecture and function of human cells is related to the gravitational force and therefore adapted to life on Earth. METHODS: We investigated the influence of altered gravity in parabolic flight and 2D clinostat experiments on key proteins of activation and signaling in primary T lymphocytes. We quantified components of the signaling cascade 1.) in non-activated T lymphocytes to assess the "basal status" of the cascade and 2.) in the process of activation to assess the signal transduction. RESULTS: We found a rapid decrease of CD3 and IL-2R surface expression and reduced p-LAT after 20 seconds of altered gravity in non-activated primary T lymphocytes during parabolic flight. Furthermore, we observed decreased CD3 surface expression, reduced ZAP-70 abundance and increased histone H3-acetylation in activated T lymphocytes after 5 minutes of clinorotation and a transient downregulation of CD3 and stable downregulation of IL-2R during 60 minutes of clinorotation. CONCLUSION: CD3 and IL-2R are downregulated in primary T lymphocytes in altered gravity. We assume that a gravity condition around 1g is required for the expression of key surface receptors and appropriate regulation of signal molecules in T lymphocytes.


Assuntos
Complexo CD3/biossíntese , Ativação Linfocitária/imunologia , Receptores de Interleucina-2/biossíntese , Linfócitos T/metabolismo , Proteína-Tirosina Quinase ZAP-70/biossíntese , Células Cultivadas , Regulação da Expressão Gênica , Gravidade Alterada , Humanos , Sistema Imunitário/metabolismo , Ativação Linfocitária/genética , Rotação , Transdução de Sinais , Voo Espacial , Linfócitos T/imunologia , Ausência de Peso
7.
Cell Commun Signal ; 10(1): 1, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22273506

RESUMO

In our study we aimed to identify rapidly reacting gravity-responsive mechanisms in mammalian cells in order to understand if and how altered gravity is translated into a cellular response. In a combination of experiments using "functional weightlessness" provided by 2D-clinostats and real microgravity provided by several parabolic flight campaigns and compared to in-flight-1g-controls, we identified rapid gravity-responsive reactions inside the cell cycle regulatory machinery of human T lymphocytes. In response to 2D clinorotation, we detected an enhanced expression of p21 Waf1/Cip1 protein within minutes, less cdc25C protein expression and enhanced Ser147-phosphorylation of cyclinB1 after CD3/CD28 stimulation. Additionally, during 2D clinorotation, Tyr-15-phosphorylation occurred later and was shorter than in the 1 g controls. In CD3/CD28-stimulated primary human T cells, mRNA expression of the cell cycle arrest protein p21 increased 4.1-fold after 20s real microgravity in primary CD4+ T cells and 2.9-fold in Jurkat T cells, compared to 1 g in-flight controls after CD3/CD28 stimulation. The histone acetyltransferase (HAT) inhibitor curcumin was able to abrogate microgravity-induced p21 mRNA expression, whereas expression was enhanced by a histone deacetylase (HDAC) inhibitor. Therefore, we suppose that cell cycle progression in human T lymphocytes requires Earth gravity and that the disturbed expression of cell cycle regulatory proteins could contribute to the breakdown of the human immune system in space.

8.
Eur J Oral Sci ; 117(4): 427-34, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19627355

RESUMO

Tin-containing fluoride solutions can reduce erosive tissue loss, but the effects of the reaction between tin and enamel are still not clear. During a 10-d period, enamel specimens were cyclically demineralized (0.05 M citric acid, pH 2.3, 6 x 5 min d(-1)) and remineralized (between the demineralization cycles and overnight). In the negative-control group, no further treatment was performed. Three groups were treated (2 x 2 min d(-1)) with tin-containing fluoride solutions (400, 1,400 or 2,100 ppm Sn2+, all 1,500 ppm F-, pH 4.5). Three additional groups were treated with test solutions twice daily, but without demineralization. Tissue loss was determined profilometrically. Energy-dispersive X-ray spectroscopy was used to measure the tin content on and within three layers (10 mum each) beneath the surface. In addition, scanning electron microscopy was conducted. All test preparations significantly reduced tissue loss. Deposition of tin on surfaces was higher without erosion than with erosion, but no incorporation of tin into enamel was found without demineralization. Under erosive conditions, both highly concentrated solutions led to the incorporation of tin up to a depth of 20 mum; the less-concentrated solution led to small amounts of tin in the outer 10 mum. The efficacy of tin-containing solutions seems to depend mainly on the incorporation of tin into enamel.


Assuntos
Cariostáticos/uso terapêutico , Esmalte Dentário/efeitos dos fármacos , Fluoretos de Estanho/uso terapêutico , Estanho/farmacocinética , Erosão Dentária/prevenção & controle , Cariostáticos/administração & dosagem , Esmalte Dentário/metabolismo , Esmalte Dentário/ultraestrutura , Solubilidade do Esmalte Dentário/efeitos dos fármacos , Diaminas/uso terapêutico , Microanálise por Sonda Eletrônica , Fluoretos/uso terapêutico , Humanos , Microscopia Eletrônica de Varredura , Fluoreto de Sódio/uso terapêutico , Compostos de Estanho/uso terapêutico , Fluoretos de Estanho/administração & dosagem , Desmineralização do Dente/etiologia , Desmineralização do Dente/patologia , Desmineralização do Dente/prevenção & controle , Erosão Dentária/patologia , Remineralização Dentária
9.
J Contam Hydrol ; 106(1-2): 83-98, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19223091

RESUMO

An ammonium contamination plume originating from sewage field management practices over several decades is affecting the water quality at the well fields of the Friedrichshagen waterworks in Berlin, Germany. Because hydraulic measures were unsuccessful due to the fixation of ammonium on the aquifer matrix by cation exchange, an in situ nitrification measure by injection of oxygen gas was chosen to protect the extraction wells. In order to assess the hydro chemical processes accompanying this in situ measure, reactive transport modelling was performed. The relevant processes are the dissolution of oxygen gas and the nitrification of ammonium which initiate secondary geochemical processes like sulphate release, acidification and hardening. The reactive transport modelling began with the deduction of a reaction network, followed by the mathematical formulation and incorporation of reactive terms into a reactive transport solver. Two model versions were set up: (1) a simplified large scale model to evaluate the long-term reaction zoning to be expected due to permanent oxygen gas injection, and (2) a verification of the monitored hydrochemistry during a first field test performed near the contamination source. The results of reactive transport modelling demonstrate that in situ injection of oxygen gas will be effective in reducing the ammonium load from the well fields, and that acidification processes near the production wells can be minimized. Finally, a line of gas injection wells extending over the whole width of the ammonium contamination plume will be constructed to protect the well fields from further ammonium load.


Assuntos
Monitoramento Ambiental , Modelos Teóricos , Esgotos/química , Sulfatos/análise , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Berlim , Previsões , Concentração de Íons de Hidrogênio , Oxigênio/química , Compostos de Amônio Quaternário/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Solubilidade , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA