Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Microbiol ; 88(2): 318-38, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23490234

RESUMO

Rhomboid-like proteases cleave membrane-anchored proteins within their transmembrane domains. In apicomplexan parasites substrates include molecules that function in parasite motility and host cell invasion. While two Plasmodium rhomboids, ROM1 and ROM4, have been examined, the roles of the remaining six rhomboids during the malaria parasite's life cycle are unknown. We present systematic gene deletion analyses of all eight Plasmodium rhomboid-like proteins as a means to discover stage-specific phenotypes and potential functions in the rodent malaria model, P. berghei. Four rhomboids (ROM4, 6, 7 and 8) are refractory to gene deletion, suggesting an essential role during asexual blood stage development. In contrast ROM1, 3, 9 and 10 were dispensable for blood stage development and exhibited no, subtle or severe defects in mosquito or liver development. Parasites lacking ROM9 and ROM10 showed no major phenotypic defects. Parasites lacking ROM1 presented a delay in blood stage patency following liver infection, but in contrast to a previous study blood stage parasites had similar growth and virulence characteristics as wild type parasites. Parasites lacking ROM3 in mosquitoes readily established oocysts but failed to produce sporozoites. ROM3 is the first apicomplexan rhomboid identified to play a vital role in sporogony.


Assuntos
Peptídeo Hidrolases/metabolismo , Plasmodium berghei/enzimologia , Plasmodium berghei/fisiologia , Proteínas de Protozoários/metabolismo , Animais , Sangue/parasitologia , Culicidae/parasitologia , Feminino , Deleção de Genes , Estágios do Ciclo de Vida , Fígado/parasitologia , Malária/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Peptídeo Hidrolases/genética , Plasmodium berghei/genética , Plasmodium berghei/patogenicidade , Proteínas de Protozoários/genética , Esporozoítos/fisiologia , Virulência
3.
Eukaryot Cell ; 8(4): 640-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19181869

RESUMO

Accumulation of infectious Plasmodium sporozoites in Anopheles spp. salivary glands marks the final step of the complex development of the malaria parasite in the insect vector. Sporozoites are formed inside midgut-associated oocysts and actively egress into the mosquito hemocoel. Traversal of the salivary gland acinar cells correlates with the sporozoite's capacity to perform continuous gliding motility. Here, we characterized the cellular role of the Plasmodium berghei sporozoite invasion-associated protein 1 (SIAP-1). Intriguingly, SIAP-1 orthologs are found exclusively in apicomplexan hemoprotozoa, parasites that are transmitted by arthropod vectors, e.g., Plasmodium, Babesia, and Theileria species. By fluorescent tagging with mCherry, we show that SIAP-1 is expressed in oocyst-derived and salivary gland-associated sporozoites, where it accumulates at the apical tip. Targeted disruption of SIAP-1 does not affect sporozoite formation but causes a partial defect in sporozoite egress from oocysts and abolishes sporozoite colonization of mosquito salivary glands. Parasites with the siap-1(-) mutation are blocked in their capacity to perform continuous gliding motility. We propose that arthropod-transmitted apicomplexan parasites specifically express secretory factors, such as SIAP-1, that mediate efficient oocyst exit and migration to the salivary glands.


Assuntos
Inativação Gênica , Malária/transmissão , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo , Animais , Anopheles/parasitologia , Vetores Artrópodes/parasitologia , Linhagem Celular , Humanos , Malária/parasitologia , Camundongos , Mutação , Plasmodium berghei/crescimento & desenvolvimento , Transporte Proteico , Glândulas Salivares/parasitologia , Esporozoítos/crescimento & desenvolvimento
4.
Mol Biochem Parasitol ; 146(1): 30-7, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16316690

RESUMO

Malaria transmission occurs during a blood-meal of an infected Anopheles mosquito. Visualization and quantification of sporozoites along the journey from the mosquito midgut, where they develop, to the vertebrate liver, their final target organ, is important for understanding many aspects of sporozoite biology. Here we describe the generation of Plasmodium berghei parasites that express the reporter gene lacZ as a stable transgene, under the control of the sporozoite-specific CSP promoter. Transgenic sporozoites expressing beta-galactosidase can be simply visualized and quantified in an enzymatic assay. In addition, these sporozoites can be used to quantify sporozoites deposited in subcutaneous tissue during natural infection.


Assuntos
Malária/parasitologia , Malária/transmissão , Plasmodium berghei/enzimologia , Esporozoítos/fisiologia , beta-Galactosidase/biossíntese , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/fisiologia , Anopheles/parasitologia , Western Blotting/métodos , Regulação Enzimológica da Expressão Gênica , Genes Reporter , Camundongos , Plasmodium berghei/genética , Plasmodium berghei/fisiologia , Regiões Promotoras Genéticas/genética , Proteínas de Protozoários/genética , Esporozoítos/química , Esporozoítos/genética , Esporozoítos/isolamento & purificação , beta-Galactosidase/genética
5.
Mol Biochem Parasitol ; 145(1): 60-70, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16242190

RESUMO

The use of transfection in the study of the biology of malaria parasites has been limited due to poor transfection efficiencies (frequency of 10(-6) to 10(-9)) and a paucity of selection markers. Here, a new method of transfection, using non-viral Nucleofector technology, is described for the rodent parasite Plasmodium berghei. The transfection efficiency obtained (episomal and targeted integration into the genome) is in the range of 10(-2) to 10(-3). Such high transfection efficiency strongly reduces the time, number of laboratory animals and amount of materials required to generate transfected parasites. Moreover, it allows different experimental strategies for reverse genetics to be developed and we demonstrate direct selection of stably and non-reversibly transformed, fluorescent protein (FP)-expressing parasites using FACS. Since there is no need to use a drug-selectable marker, this method increases the (low) number of selectable markers available for transformation of P. berghei and can in principle be extended to utilise additional FP. Furthermore the FACS-selected, FP-expressing parasites may serve as easily visualized reference lines that may still be genetically manipulated with the existing drug-selectable markers. The combination of enhanced transfection efficiency and a versatile rodent model provides a basis for the further development of novel tools for high throughput genome manipulation.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Plasmodium berghei/genética , Seleção Genética , Transfecção/instrumentação , Transfecção/métodos , Animais , Eletroporação , Citometria de Fluxo/métodos , Proteínas de Fluorescência Verde/genética , Malária/parasitologia , Camundongos , Parasitemia/parasitologia , Plasmodium berghei/classificação , Plasmodium berghei/metabolismo , Ratos , Transformação Genética
6.
PLoS Biol ; 3(6): e192, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15901208

RESUMO

Plasmodium sporozoite invasion of liver cells has been an extremely elusive event to study. In the prevailing model, sporozoites enter the liver by passing through Kupffer cells, but this model was based solely on incidental observations in fixed specimens and on biochemical and physiological data. To obtain direct information on the dynamics of sporozoite infection of the liver, we infected live mice with red or green fluorescent Plasmodium berghei sporozoites and monitored their behavior using intravital microscopy. Digital recordings show that sporozoites entering a liver lobule abruptly adhere to the sinusoidal cell layer, suggesting a high-affinity interaction. They glide along the sinusoid, with or against the bloodstream, to a Kupffer cell, and, by slowly pushing through a constriction, traverse across the space of Disse. Once inside the liver parenchyma, sporozoites move rapidly for many minutes, traversing several hepatocytes, until ultimately settling within a final one. Migration damage to hepatocytes was confirmed in liver sections, revealing clusters of necrotic hepatocytes adjacent to structurally intact, sporozoite-infected hepatocytes, and by elevated serum alanine aminotransferase activity. In summary, malaria sporozoites bind tightly to the sinusoidal cell layer, cross Kupffer cells, and leave behind a trail of dead hepatocytes when migrating to their final destination in the liver.


Assuntos
Fígado/parasitologia , Malária/patologia , Plasmodium berghei/patogenicidade , Esporozoítos/patogenicidade , Aedes/parasitologia , Animais , Animais Geneticamente Modificados , Sequência de Bases , Primers do DNA , Modelos Animais de Doenças , Fígado/patologia , Malária/parasitologia , Camundongos , Microscopia de Fluorescência , Dados de Sequência Molecular , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA