Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Physiology (Bethesda) ; 36(6): 334, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34569257
2.
Physiology (Bethesda) ; 36(5): 270-271, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34431419
3.
Am J Transl Res ; 11(9): 6007-6015, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632568

RESUMO

CD38 is expressed on the surface of many immune cells, which are closely associated with antitumor immunity and immune tolerance of tumor cells. Therefore, monitoring CD38 expression has gained great attention for tracking the progression of tumors and cancer treatment. Herein, we aim to develop a PET tracer using an anti-CD38 monoclonal antibody (daratumumab) to monitor CD38 expression in hepatocellular carcinoma (HCC). In this study, daratumumab was radiolabeled with 64Cu (t1/2=12.7 h) to obtain 64Cu-NOTA-daratumumab. Relative CD38 expression in HepG2 and Huh7 HCC cell lines was assessed using western blot. The specificity of 64Cu-NOTA-daratumumab to both cell lines was examined using an in vitro cell-binding assay. PET imaging in subcutaneous models of HCC was performed to evaluate the capability and specificity of 64Cu-NOTA-daratumumab to target CD38 in vivo. Region-of-interest analysis and ex vivo biodistribution were performed to verify the tracer targeting capability of CD38. Through cellular studies of two HCC cell lines, CD38 expression was found to be higher in HepG2 and minimal in Huh7 cells. 64Cu-NOTA-daratumumab showed relatively high affinity to CD38 (Ka=18.21 ± 1.74 nM), while the affinity of Huh7 was in the micromolar range for daratumumab binding to the cells (Ka=3.98 ± 0.87 µM). At 48 h post-injection, PET imaging of subcutaneous models with 64Cu-NOTA-daratumumab revealed tumor uptakes of 12.23 ± 2.4 and 2.7 ± 1.2 %ID/g for HepG2 and Huh7, respectively (n=4), which correlated well with relative CD38 expression of the cells. Moreover, the 64Cu-NOTA-IgG nonspecific analogue showed a significantly lower uptake in HepG2 subcutaneous model in mice, suggesting a specific binding of daratumumab with CD38 in vivo. Our cellular studies and PET imaging confirmed the capability and specificity of 64Cu-NOTA-daratumumab for the imaging of CD38 in murine models of HCC. This study supports our claim that 64Cu-NOTA-daratumumab is an effective PET tracer for the non-invasive evaluation of CD38 expression and sensitive detection of CD38-positive tumor lesions in HCC.

4.
Nano Res ; 12(3): 637-642, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32055285

RESUMO

DNA tetrahedron nanostructure (DTN) is one of the simplest DNA nanostructures and has been successfully applied for biosensing, imaging, and treatment of cancer. To facilitate its biomedical applications and potential clinical translation, fundamental understanding of DTN's transportation among major organs in living organisms becomes increasingly important. Here, we describe the efficient renal clearance of DTN in healthy mice by using positron emission tomography (PET) imaging. The kidney elimination of DTN was later applied for renal function evaluation in murine models of unilateral ureteral obstruction (UUO). We further established a mathematical program of DTN to validate its changes of transportation pattern in healthy and UUO mice. We believe the establishment of pharmacokinetic profiles and mathematical model of DTN may provide insight for future optimization of DNA nanostructures for biomedical applications.

5.
Nat Biomed Eng ; 2(11): 865-877, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30505626

RESUMO

Patients with acute kidney injury (AKI) frequently require kidney transplantation and supportive therapies, such as rehydration and dialysis. Here, we show that radiolabelled DNA origami nanostructures (DONs) with rectangular, triangular and tubular shapes accumulate preferentially in the kidneys of healthy mice and mice with rhabdomyolysis-induced AKI, and that rectangular DONs have renal-protective properties, with efficacy similar to the antioxidant N-acetylcysteine-a clinically used drug that ameliorates contrast-induced AKI and protects kidney function from nephrotoxic agents. We evaluated the biodistribution of DONs non-invasively via positron emission tomography, and the efficacy of rectangular DONs in the treatment of AKI via dynamic positron emission tomography imaging with 68Ga-EDTA, blood tests and kidney tissue staining. DNA-based nanostructures could become a source of therapeutic agents for the treatment of AKI and other renal diseases.

6.
Eur J Nucl Med Mol Imaging ; 45(8): 1372-1381, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29450576

RESUMO

PURPOSE: CD38 is considered a potential biomarker for multiple myeloma (MM) and has shown a strong link with chronic lymphocytic leukemia due to high and uniform expression on plasma cells. In vivo evaluation of CD38 expression may provide useful information about lesion detection and prognosis of treatment in MM. In this study, immunoPET imaging with 89Zr-labeled daratumumab was used for differentiation of CD38 expression in murine lymphoma models to provide a potential non-invasive method for monitoring CD38 in the clinic. METHODS: Daratumumab was radiolabeled with 89Zr (t1/2 = 78.4 h) via conjugation with desferrioxamine (Df). After Western blot (WB) was used to screen CD38 expression in five lymphoma cell lines, flow cytometry and cellular binding assays were performed to test the binding ability of labeled or conjugated daratumumab with CD38 in vitro. PET imaging and biodistribution studies were performed to evaluate CD38 expression after injection of 89Zr-Df-daratumumab. 89Zr-Df-IgG was also evaluated as a non-specific control group in the Ramos model. Finally, CD38 expression in tumor tissues was verified by histological analysis. RESULTS: Using WB screening, the Ramos cell line was found to express the highest level of CD38 while the HBL-1 cell line had the lowest expression. Df-conjugated and 89Zr-labeled daratumumab displayed similar high binding affinities with Ramos cells. PET imaging of 89Zr-Df-daratumumab showed a high tumor uptake of up to 26.6 ± 8.0 %ID/g for Ramos at 120 h post-injection, and only up to 6.6 ± 2.9 %ID/g for HBL-1 (n = 4). Additionally, 89Zr-Df-IgG demonstrated a low tumor uptake in the Ramos model (only 4.3 ± 0.8 %ID/g at 120 h post-injection). Ex vivo biodistribution studies showed similar trends with imaging results. Immunofluorescence staining of tumor tissues verified higher CD38 expression of Ramos than that of HBL-1. CONCLUSIONS: The role of 89Zr-Df-daratumumab was investigated for evaluating CD38 expression in lymphoma models non-invasively and was found to be to a promising imaging agent of CD38-positive hematological diseases such as MM in future clinical applications.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Anticorpos Monoclonais/farmacocinética , Linfoma/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons , Radioisótopos , Distribuição Tecidual , Zircônio
7.
Cytokine ; 107: 105-112, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29452720

RESUMO

ALT-803 is a fusion protein complex consisting of an interleukin (IL)-15 superagonist and a dimeric IL-15 receptor alpha sushi domain IgG1 Fc fusion protein. When administered to mice, ALT-803 is capable of inducing natural killer (NK) and CD8+ T cell proliferation and activation, and effectively promoting potent anti-tumor responses. Currently, ALT-803 is in clinical trials for treatment of various solid tumors and hematological malignancies. In the initial phase of these clinical studies, intravenous (iv) injection was used according to the route used in pre-clinical efficacy studies. In order to evaluate the possible advantage of subcutaneous (sc) injection versus iv injection, this study compared the biological activity of the two treatment regimens of ALT-803 in pre-clinical in vivo models. The pharmacokinetics, immune stimulation, and anti-tumor efficacy of iv and sc injection routes of ALT-803 in C57BL/6 mice were compared. The half-life of ALT-803 was 7.5 h for iv versus 7.7 h for sc with the maximal detected serum concentration of ALT-803 to be 3926 ng/ml at 0.5 h time-point following iv injection versus 495 ng/ml at 16 h post sc injection. Biodistribution studies indicated that sc ALT-803, similarly to iv ALT-803 as previously reported, has a greater tissue distribution and longer residence time in lymphoid tissues compared to recombinant IL-15. Notably, ALT-803 when administered either iv or sc induced comparable proliferation and activation of CD8+ T and NK cells and resulted in similar reductions of tumor burden. A toxicity study of mice receiving multiple injections of ALT-803 for 4 weeks by iv or sc routes revealed equivalent immune-related changes. The gradual absorbance into the blood stream and lower maximal blood levels of ALT-803 in sc-injected mice, along with similar anti-tumor efficacy support the administration of ALT-803 by sc injection in patients with various malignancies and infectious diseases.


Assuntos
Interleucina-15/metabolismo , Proteínas/administração & dosagem , Administração Intravenosa/métodos , Animais , Antineoplásicos/administração & dosagem , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Injeções Subcutâneas/métodos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
8.
Eur J Nucl Med Mol Imaging ; 45(1): 110-120, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28821924

RESUMO

PURPOSE: Nivolumab is a human monoclonal antibody specific for programmed cell death-1 (PD-1), a negative regulator of T-cell activation and response. Acting as an immune checkpoint inhibitor, nivolumab binds to PD-1 expressed on the surface of many immune cells and prevents ligation by its natural ligands. Nivolumab is only effective in a subset of patients, and there is limited evidence supporting its use for diagnostic, monitoring, or stratification purposes. METHODS: 89Zr-Df-nivolumab was synthesized to map the biodistribution of PD-1-expressing tumor infiltrating T-cells in vivo using a humanized murine model of lung cancer. The tracer was developed by radiolabeling the antibody with the positron emitter zirconium-89 (89Zr). Imaging results were validated by ex vivo biodistribution studies, and PD-1 expression was validated by immunohistochemistry. Data obtained from PET imaging were used to determine human dosimetry estimations. RESULTS: The tracer showed elevated binding to stimulated PD-1 expressing T-cells in vitro and in vivo. PET imaging of 89Zr-Df-nivolumab allowed for clear delineation of subcutaneous tumors through targeting of localized activated T-cells expressing PD-1 in the tumors and salivary glands of humanized A549 tumor-bearing mice. In addition to tumor uptake, salivary and lacrimal gland infiltration of T-cells was noticeably visible and confirmed via histological analysis. CONCLUSIONS: These data support our claim that PD-1-targeted agents allow for tumor imaging in vivo, which may assist in the design and development of new immunotherapies. In the future, noninvasive imaging of immunotherapy biomarkers may assist in disease diagnostics, disease monitoring, and patient stratification.


Assuntos
Anticorpos Monoclonais/farmacocinética , Infiltração Leucêmica/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Linfócitos T/metabolismo , Zircônio/química , Animais , Anticorpos Monoclonais/química , Células Cultivadas , Humanos , Infiltração Leucêmica/patologia , Pulmão/diagnóstico por imagem , Pulmão/patologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Nivolumabe , Receptor de Morte Celular Programada 1/metabolismo , Compostos Radiofarmacêuticos/síntese química , Distribuição Tecidual
9.
Adv Funct Mater ; 27(34)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-29151826

RESUMO

Noninvasive dynamic positron emission tomography (PET) imaging was used to investigate the balance between renal clearance and tumor uptake behaviors of polyethylene glycol (PEG)-modified porphyrin nanoparticles (TCPP-PEG) with various molecular weights. TCPP-PEG10K nanoparticles with clearance behavior would be a good candidate for PET image-guided photodynamic therapy.

10.
Mol Pharm ; 14(10): 3239-3247, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28825843

RESUMO

CD146 has been identified as an excellent biomarker for lung cancer as its overexpression in solid tumors has been linked to disease progression, invasion, and metastasis. Previously, our group described a positive correlation between 64Cu-labeled YY146 uptake and increased expression of CD146 in six human lung cancer cell lines using subcutaneous tumor models. In this study, we investigate a monoclonal antibody called YY146 for immunoPET imaging of CD146 in two intrapulmonary metastasis models of non-small cell lung cancer (NSCLC). The binding and immunoreactivity of the tracer were assessed by in vitro assays. Radiolabeling of YY146 with positron emitting Cu-64 (64Cu-NOTA-YY146) enabled PET imaging of intrapulmonary metastasis. Mice were intravenously injected with two million tumor cells, and CT imaging was used to verify the presence of lung metastases. 64Cu-NOTA-YY146 was injected into tumor-bearing mice, and animals were subjected to PET/CT imaging at 4, 24, and 48 h postinjection. Both the average and maximum lung PET signal intensities were quantified and compared between high and low CD146-expressing metastases. Further validation was accomplished through immunofluorescence imaging of resected tissues with CD31 and CD146. In flow cytometry, YY146 revealed strong binding to CD146 in H460 cells due to its high expression with minimal binding to CD146-low expressing H358 cells. Both YY146 and NOTA-YY146 showed similar binding, suggesting that NOTA conjugation did not elicit any negative effects on its binding affinity. Imaging of 64Cu-NOTA-YY146 in H460 tumor-bearing mice revealed rapid, persistent, and highly specific tracer accumulation. Uptake of 64Cu-NOTA-YY146 in the whole lung was calculated for H460 and H358 as 7.43 ± 0.38 and 3.95 ± 0.47% ID/g at 48 h postinjection (n = 4, p < 0.05), and the maximum lung signals were determined to be 13.85 ± 1.07 (H460) and 6.08 ± 0.73% ID/g (H358) at equivalent time points (n = 4, p < 0.05). To ensure the specificity of the tracer, a nonspecific antibody was injected into H460 tumor-bearing mice. Ex vivo biodistribution and immunofluorescence imaging validated the PET findings. In summary, 64Cu-NOTA-YY146 allowed for successful imaging of CD146-expressing intrapulmonary metastases of NSCLC in mice. This preliminary study provides evidence supporting the future clinical utilization of 64Cu-NOTA-YY146 for possible treatment monitoring of CD146-targeted therapy or improving patient stratification.


Assuntos
Anticorpos Monoclonais/farmacologia , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Imagem Molecular/métodos , Animais , Anticorpos Monoclonais/química , Biomarcadores Tumorais/imunologia , Antígeno CD146/imunologia , Antígeno CD146/metabolismo , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Radioisótopos de Cobre , Feminino , Citometria de Fluxo , Imunofluorescência , Compostos Heterocíclicos , Compostos Heterocíclicos com 1 Anel , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Traçadores Radioativos , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Control Release ; 264: 160-168, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-28843831

RESUMO

Overexpression of tissue factor (TF) has been associated with increased tumor growth, tumor angiogenesis, and metastatic potential in many malignancies, including pancreatic cancer. Additionally, high TF expression was shown to strongly correlate with poor prognoses and decreased survival in pancreatic cancer patients. Herein, we exploited the potential targeting of TF for positron emission tomography (PET) imaging of pancreatic cancer. The TF-targeted tracer was developed through radiolabeling of the anti-human TF monoclonal antibody (ALT-836) with 89Zr. The tracer was characterized by fluorescence microscopy and flow cytometry assays in BXPC-3 and PANC-1 cells, two pancreatic cancer cell lines with high and low TF expression levels, respectively. Non-invasive PET scans were acquired in tumor-bearing mice injected with 89Zr-Df-ALT-836. Additionally, ex vivo biodistribution, blocking, and histological studies were performed to establish the affinity and specificity of 89Zr-Df-ALT-836 for TF in vivo. 89Zr-labeling of Df-ALT-836 was achieved in high yield and good specific activity. Flow cytometry and microscopy studies revealed no detectable difference in TF-binding affinity between ALT-836 and Df-ALT-836 in vitro. Longitudinal PET scans unveiled a lasting and prominent 89Zr-Df-ALT-836 uptake in BXPC-3 tumors (peak at 31.5±6.0%ID/g at 48h post-injection; n=3), which was significantly abrogated (2.3±0.5%ID/g at 48h post-injection; n=3) when mice were pre-injected with a blocking dose (50mg/kg) of unlabeled ALT-836. Ex vivo biodistribution data confirmed the accuracy of the PET results, and histological analysis correlated high tumor uptake with in situ TF expression. Taken together, these results attest to the excellent affinity and TF-specificity of 89Zr-Df-ALT-836. With elevated, persistent, and specific accumulation in TF-positive BXPC-3 tumors, PET imaging using 89Zr-Df-ALT-836 promises to open new avenues for improving future diagnosis, stratification, and treatment response assessment in pancreatic cancer patients.


Assuntos
Desferroxamina , Imunoglobulina G , Neoplasias Pancreáticas/metabolismo , Radioisótopos , Compostos Radiofarmacêuticos , Proteínas Recombinantes , Tromboplastina/metabolismo , Zircônio , Animais , Linhagem Celular Tumoral , Desferroxamina/administração & dosagem , Desferroxamina/química , Desferroxamina/farmacocinética , Feminino , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/química , Rim/metabolismo , Fígado/metabolismo , Camundongos Nus , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/administração & dosagem , Radioisótopos/química , Radioisótopos/farmacocinética , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Sideróforos/administração & dosagem , Sideróforos/química , Sideróforos/farmacocinética , Baço/metabolismo , Distribuição Tecidual , Zircônio/administração & dosagem , Zircônio/química , Zircônio/farmacocinética
12.
Mol Pharm ; 14(7): 2400-2406, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28573863

RESUMO

Daratumumab (Darzalex, Janssen Biotech) is a clinically approved antibody targeting CD38 for the treatment of multiple myeloma. However, CD38 is also expressed by other cancer cell types, including lung cancer, where its expression or absence may offer prognostic value. We therefore developed a PET tracer based upon daratumumab for tracking CD38 expression, utilizing murine models of non-small cell lung cancer to verify its specificity. Daratumumab was prepared for radiolabeling with 89Zr (t1/2 = 78.4 h) through conjugation with desferrioxamine (Df). Western blot, flow cytometry, and saturation binding assays were utilized to characterize CD38 expression and binding of daratumumab to three non-small cell lung cancer cell lines: A549, H460, and H358. Murine xenograft models of the cell lines were also generated for further in vivo studies. Longitudinal PET imaging was performed following injection of 89Zr-Df-daratumumab out to 120 h postinjection, and nonspecific uptake was also evaluated through the injection of a radiolabeled control IgG antibody in A549 mice, 89Zr-Df-IgG. Ex vivo biodistribution and histological analyses were also performed after the terminal imaging time point at 120 h postinjection. Through cellular studies, A549 cells were found to express higher levels of CD38 than the H460 or H358 cell lines. PET imaging and ex vivo biodistribution studies verified in vitro trends, with A549 tumor uptake peaking at 8.1 ± 1.2%ID/g at 120 h postinjection according to PET analysis, and H460 and H358 at lower levels at the same time point (6.7 ± 0.7%ID/g and 5.1 ± 0.4%ID/g, respectively; n = 3 or 4). Injection of a nonspecific radiolabeled IgG into A549 tumor-bearing mice also demonstrated lower tracer uptake of 4.4 ± 1.3%ID/g at 120 h. Immunofluorescent staining of tumor tissues showed higher staining levels present in A549 tissues over H460 and H358. Thus, 89Zr-Df-daratumumab is able to image CD38-expressing tissues in vivo using PET, as verified through the exploration of non-small cell lung cancer models in this study. This agent therefore holds potential to image CD38 in other malignancies and aid in patient stratification and elucidation of the biodistribution of CD38.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Células A549 , Animais , Anticorpos Monoclonais/uso terapêutico , Western Blotting , Linhagem Celular Tumoral , Desferroxamina/uso terapêutico , Feminino , Citometria de Fluxo , Humanos , Camundongos , Camundongos Nus , Zircônio/uso terapêutico
13.
Diabetes ; 66(8): 2163-2174, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28515126

RESUMO

The noninvasive measurement of functional ß-cell mass would be clinically valuable for monitoring the progression of type 1 and type 2 diabetes as well as the viability of transplanted insulin-producing cells. Although previous work using MRI has shown promise for functional ß-cell mass determination through voltage-dependent Ca2+ channel (VDCC)-mediated internalization of Mn2+, the clinical utility of this technique is limited by the cytotoxic levels of the Mn2+ contrast agent. Here, we show that positron emission tomography (PET) is advantageous for determining functional ß-cell mass using 52Mn2+ (t1/2: 5.6 days). We investigated the whole-body distribution of 52Mn2+ in healthy adult mice by dynamic and static PET imaging. Pancreatic VDCC uptake of 52Mn2+ was successfully manipulated pharmacologically in vitro and in vivo using glucose, nifedipine (VDCC blocker), the sulfonylureas tolbutamide and glibenclamide (KATP channel blockers), and diazoxide (KATP channel opener). In a mouse model of streptozotocin-induced type 1 diabetes, 52Mn2+ uptake in the pancreas was distinguished from healthy controls in parallel with classic histological quantification of ß-cell mass from pancreatic sections. 52Mn2+-PET also reported the expected increase in functional ß-cell mass in the ob/ob model of pretype 2 diabetes, a result corroborated by histological ß-cell mass measurements and live-cell imaging of ß-cell Ca2+ oscillations. These results indicate that 52Mn2+-PET is a sensitive new tool for the noninvasive assessment of functional ß-cell mass.


Assuntos
Diabetes Mellitus Experimental/diagnóstico por imagem , Células Secretoras de Insulina/fisiologia , Compostos de Manganês/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacologia , Animais , Canais de Cálcio/efeitos dos fármacos , Estudos de Casos e Controles , Tamanho Celular , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Progressão da Doença , Humanos , Células Secretoras de Insulina/citologia , Camundongos , Pâncreas/citologia , Pâncreas/diagnóstico por imagem , Estreptozocina
14.
Mol Pharm ; 14(5): 1782-1789, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28388076

RESUMO

Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is expressed on the surface of activated T cells and some tumor cells, and is the target of the clinically approved monoclonal antibody ipilimumab. In this study, we investigate specific binding of radiolabeled ipilimumab to CTLA-4 expressed by human non-small cell lung cancer cells in vivo using positron emission tomography (PET). Ipilimumab was radiolabeled with 64Cu (t1/2 = 12.7 h) through the use of the chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) to formulate 64Cu-DOTA-ipilimumab. CTLA-4 expression in three non-small cell lung cancer (NSCLC) cell lines (A549, H460, and H358) was verified and quantified by Western blot and enzyme-linked immunosorbent assays (ELISA). A receptor binding assay was utilized to monitor the binding and internalization of 64Cu-DOTA-ipilimumab in the NSCLC cell lines. Next, the biodistribution of 64Cu-DOTA-ipilimumab was mapped by longitudinal PET imaging up to 48 h after injection. Ex vivo biodistribution and histological studies were employed to verify PET results. By in vitro analysis, CTLA-4 was found to be expressed on all three NSCLC cell lines with A549 and H358 showing the highest and lowest level of expression, respectively. PET imaging and quantification verified these findings as the tracer accumulated highest in the A549 tumor model (9.80 ± 0.22%ID/g at 48 h after injection; n = 4), followed by H460 and H358 tumors with uptakes of 9.37 ± 0.26%ID/g and 7.43 ± 0.05%ID/g, respectively (n = 4). The specificity of the tracer was verified by injecting excess ipilimumab in A549 tumor-bearing mice, which decreased tracer uptake to 6.90 ± 0.51%ID/g at 48 after injection (n = 4). Ex vivo analysis following the last imaging session also corroborated these findings. 64Cu-DOTA-ipilimumab showed enhanced and persistent accumulation in CTLA-4-expressing tissues, which will enable researchers further insight into CTLA-4 targeted therapies in the future.


Assuntos
Antígeno CTLA-4/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Animais , Linhagem Celular Tumoral , Humanos , Imunoterapia , Ipilimumab/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos
15.
Mol Pharm ; 14(5): 1646-1655, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28292180

RESUMO

Dual-targeted imaging agents have shown improved targeting efficiencies in comparison to single-targeted entities. The purpose of this study was to quantitatively assess the tumor accumulation of a dual-labeled heterobifunctional imaging agent, targeting two overexpressed biomarkers in pancreatic cancer, using positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging modalities. A bispecific immunoconjugate (heterodimer) of CD105 and tissue factor (TF) Fab' antibody fragments was developed using click chemistry. The heterodimer was dual-labeled with a radionuclide (64Cu) and fluorescent dye. PET/NIRF imaging and biodistribution studies were performed in four-to-five week old nude athymic mice bearing BxPC-3 (CD105/TF+/+) or PANC-1 (CD105/TF-/-) tumor xenografts. A blocking study was conducted to investigate the specificity of the tracer. Ex vivo tissue staining was performed to compare TF/CD105 expression in tissues with PET tracer uptake to validate in vivo results. PET imaging of 64Cu-NOTA-heterodimer-ZW800 in BxPC-3 tumor xenografts revealed enhanced tumor uptake (21.0 ± 3.4%ID/g; n = 4) compared to the homodimer of TRC-105 (9.6 ± 2.0%ID/g; n = 4; p < 0.01) and ALT-836 (7.6 ± 3.7%ID/g; n = 4; p < 0.01) at 24 h postinjection. Blocking studies revealed that tracer uptake in BxPC-3 tumors could be decreased by 4-fold with TF blocking and 2-fold with CD105 blocking. In the negative model (PANC-1), heterodimer uptake was significantly lower than that found in the BxPC-3 model (3.5 ± 1.1%ID/g; n = 4; p < 0.01). The specificity was confirmed by the successful blocking of CD105 or TF, which demonstrated that the dual targeting with 64Cu-NOTA-heterodimer-ZW800 provided an improvement in overall tumor accumulation. Also, fluorescence imaging validated the PET imaging, allowing for clear delineation of the xenograft tumors. Dual-labeled heterodimeric imaging agents, like 64Cu-NOTA-heterodimer-ZW800, may increase the overall tumor accumulation in comparison to single-targeted homodimers, leading to improved imaging of cancer and other related diseases.


Assuntos
Anticorpos Biespecíficos/química , Radioisótopos de Cobre/química , Fragmentos Fab das Imunoglobulinas/química , Neoplasias Pancreáticas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Animais , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Humanos , Camundongos , Camundongos Nus
16.
Eur J Nucl Med Mol Imaging ; 44(8): 1296-1305, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28265738

RESUMO

PURPOSE: Human epidermal growth factor receptor 2 (HER2) is over-expressed in over 30% of ovarian cancer cases, playing an essential role in tumorigenesis and metastasis. Non-invasive imaging of HER2 is of great interest for physicians as a mean to better detect and monitor the progression of ovarian cancer. In this study, HER2 was assessed as a biomarker for ovarian cancer imaging using 64Cu-labeled pertuzumab for immunoPET imaging. METHODS: HER2 expression and binding were examined in three ovarian cancer cell lines (SKOV3, OVCAR3, Caov3) using in vitro techniques, including western blot and saturation binding assays. PET imaging and biodistribution studies in subcutaneous models of ovarian cancer were performed for non-invasive in vivo evaluation of HER2 expression. Additionally, orthotopic models were employed to further validate the imaging capability of 64Cu-NOTA-pertuzumab. RESULTS: HER2 expression was highest in SKOV3 cells, while OVCAR3 and Caov3 displayed lower HER2 expression. 64Cu-NOTA-pertuzumab showed high specificity for HER2 (Ka = 3.1 ± 0.6 nM) in SKOV3. In subcutaneous tumors, PET imaging revealed tumor uptake of 41.8 ± 3.8, 10.5 ± 3.9, and 12.1 ± 2.3%ID/g at 48 h post-injection for SKOV3, OVCAR3, and Caov3, respectively (n = 3). In orthotopic models, PET imaging with 64Cu-NOTA-pertuzumab allowed for rapid and clear delineation of both primary and small peritoneal metastases in HER2-expressing ovarian cancer. CONCLUSIONS: 64Cu-NOTA-pertuzumab is an effective PET tracer for the non-invasive imaging of HER2 expression in vivo, rendering it a potential tracer for treatment monitoring and improved patient stratification.


Assuntos
Anticorpos Monoclonais Humanizados , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Receptor ErbB-2/metabolismo , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/metabolismo , Anticorpos Monoclonais Humanizados/farmacocinética , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Radioisótopos de Cobre , Feminino , Compostos Heterocíclicos com 1 Anel/química , Humanos , Marcação por Isótopo , Camundongos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Radiometria , Distribuição Tecidual
17.
Angew Chem Int Ed Engl ; 56(11): 2889-2892, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28170126

RESUMO

Macrocyclic chelators have been widely employed in the realm of nanoparticle-based positron emission tomography (PET) imaging, whereas its accuracy remains questionable. Here, we found that 64 Cu can be intrinsically labeled onto nanographene based on interactions between Cu and the π electrons of graphene without the need of chelator conjugation, providing a promising alternative radiolabeling approach that maintains the native in vivo pharmacokinetics of the nanoparticles. Due to abundant π bonds, reduced graphene oxide (RGO) exhibited significantly higher labeling efficiency in comparison with graphene oxide (GO) and exhibited excellent radiostability in vivo. More importantly, nonspecific attachment of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) on nanographene was observed, which revealed that chelator-mediated nanoparticle-based PET imaging has its inherent drawbacks and can possibly lead to erroneous imaging results in vivo.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Quelantes/química , Radioisótopos de Cobre/química , Grafite/química , Nanopartículas/química , Tomografia por Emissão de Pósitrons , Animais , Cobre/química , Feminino , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Camundongos , Tamanho da Partícula
18.
Eur J Nucl Med Mol Imaging ; 44(3): 517-532, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27844106

RESUMO

Lymphoma is a complex disease that arises from cells of the immune system with an intricate pathology. While lymphoma may be classified as Hodgkin or non-Hodgkin, each type of tumor is genetically and phenotypically different and highly invasive tissue biopsies are the only method to investigate these differences. Noninvasive imaging strategies, such as immunoPET, can provide a vital insight into disease staging, monitoring treatment response in patients, and dose planning in radioimmunotherapy. ImmunoPET imaging with radiolabeled antibody-based tracers may also assist physicians in optimizing treatment strategies and enhancing patient stratification. Currently, there are two common biomarkers for molecular imaging of lymphoma, CD20 and CD30, both of which have been considered for investigation in preclinical imaging studies. In this review, we examine the current status of both preclinical and clinical imaging of lymphoma using radiolabeled antibodies. Additionally, we briefly investigate the role of radiolabeled antibodies in lymphoma therapy. As radiolabeled antibodies play critical roles in both imaging and therapy of lymphoma, the development of novel antibodies and the discovery of new biomarkers may greatly affect lymphoma imaging and therapy in the future.


Assuntos
Anticorpos Monoclonais/efeitos adversos , Ensaios Clínicos como Assunto , Linfoma/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/efeitos adversos , Animais , Anticorpos Monoclonais/uso terapêutico , Humanos , Linfoma/radioterapia , Radioimunoterapia/efeitos adversos , Radioimunoterapia/métodos , Compostos Radiofarmacêuticos/uso terapêutico
19.
Adv Drug Deliv Rev ; 113: 157-176, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27521055

RESUMO

Development of novel imaging probes for cancer diagnosis is critical for early disease detection and management. The past two decades have witnessed a surge in the development and evolution of radiolabeled nanoparticles as a new frontier in personalized cancer nanomedicine. The dynamic synergism of positron emission tomography (PET) and nanotechnology combines the sensitivity and quantitative nature of PET with the multifunctionality and tunability of nanomaterials, which can help overcome certain key challenges in the field. In this review, we discuss the recent advances in radionanomedicine, exemplifying the ability to tailor the physicochemical properties of nanomaterials to achieve optimal in vivo pharmacokinetics and targeted molecular imaging in living subjects. Innovations in development of facile and robust radiolabeling strategies and biomedical applications of such radionanoprobes in cancer theranostics are highlighted. Imminent issues in clinical translation of radiolabeled nanomaterials are also discussed, with emphasis on multidisciplinary efforts needed to quickly move these promising agents from bench to bedside.


Assuntos
Nanopartículas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Nanomedicina Teranóstica , Animais , Humanos
20.
J Nucl Med ; 58(1): 162-168, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27493273

RESUMO

Pembrolizumab is a humanized monoclonal antibody targeting programmed cell death protein 1 (PD-1) found on T and pro-B cells. Pembrolizumab prevents PD-1 ligation by both PD-L1 and PD-L2, preventing the immune dysregulation that otherwise occurs when T-cells encounter cells expressing these ligands. Clinically, PD-1 blockade elicits potent antitumor immune responses, and antibodies blocking PD-1 ligation, including pembrolizumab, have recently received Food and Drug Administration approval for the treatment of advanced melanoma, renal cell cancer, and non-small cell lung cancer. METHODS: In this study, we evaluated the pharmacokinetics, biodistribution, and dosimetry of pembrolizumab in vivo, accomplished through radiolabeling with the positron emitter 89Zr. PET imaging was used to evaluate the whole-body distribution of 89Zr-deferoxamine (Df)-pembrolizumab in two rodent models (mice and rats). Data obtained from PET scans and biodistribution studies were extrapolated to humans to estimate the dosimetry of the tracer. As a proof of concept, the biodistribution of 89Zr-Df-pembrolizumab was further investigated in a humanized murine model. RESULTS: The tracer remained stable in blood circulation throughout the study and accumulated the greatest in liver and spleen tissues. Both mice and rats showed similar biodistribution and pharmacokinetics of 89Zr-Df-pembrolizumab. In the humanized mouse model, T-cell infiltration into the salivary and lacrimal glands could be successfully visualized. CONCLUSION: These data will augment our understanding of the pharmacokinetics and biodistribution of radiolabeled pembrolizumab in vivo, while providing detailed dosimetry data that may lead to better dosing strategies in the future. These findings further demonstrate the utility of noninvasive in vivo PET imaging to dynamically track T-cell checkpoint receptor expression and localization in a humanized mouse model.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Rastreamento de Células/métodos , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/farmacocinética , Linfócitos T/metabolismo , Zircônio/farmacocinética , Animais , Anticorpos Monoclonais Humanizados/química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Marcação por Isótopo/métodos , Masculino , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos ICR , Especificidade de Órgãos , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Linfócitos T/citologia , Distribuição Tecidual , Contagem Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...