RESUMO
Shade is a mechanism to reduce heat load providing cattle with an environment supportive of their welfare needs. Although heat stress has been extensively reviewed, researched, and addressed in dairy production systems, it has not been investigated in the same manner in the beef cattle supply chain. Like all animals, beef cattle are susceptible to heat stress if they are unable to dissipate heat during times of elevated ambient temperatures. There are many factors that impact heat stress susceptibility in beef cattle throughout the different supply chain sectors, many of which relate to the production system, that is, availability of shade, microclimate of environment, and nutrition management. The results from studies evaluating the effects of shade on production and welfare are difficult to compare due to variation in structural design, construction materials used, height, shape, and area of shade provided. Additionally, depending on operation location, shade may or may not be beneficial during all times of the year, which can influence the decision to make shade a permanent part of management systems. Shade has been shown to lessen the physiologic response of cattle to heat stress. Shaded cattle exhibit lower respiration rates, body temperatures, and panting scores compared with unshaded cattle in weather that increases the risk of heat stress. Results from studies investigating the provision of shade indicate that cattle seek shade in hot weather. The impact of shade on behavioral patterns is inconsistent in the current body of research, with some studies indicating that shade provision impacts behavior and other studies reporting no difference between shaded and unshaded groups. Analysis of performance and carcass characteristics across feedlot studies demonstrated that shaded cattle had increased ADG, improved feed efficiency, HCW, and dressing percentage when compared with cattle without shade. Despite the documented benefits of shade, current industry statistics, although severely limited in scope, indicate low shade implementation rates in feedlots and data in other supply chain sectors do not exist. Industry guidelines and third-party on-farm certification programs articulate the critical need for protection from extreme weather but are not consistent in providing specific recommendations and requirements. Future efforts should include: updated economic analyses of cost vs. benefit of shade implementation, exploration of producer perspectives and needs relative to shade, consideration of shade impacts in the cow-calf and slaughter plant segments of the supply chain, and integration of indicators of affective (mental) state and preference in research studies to enhance the holistic assessment of cattle welfare.
Assuntos
Doenças dos Bovinos , Transtornos de Estresse por Calor , Animais , Temperatura Corporal , Bovinos , Feminino , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico , Taxa Respiratória , Luz SolarRESUMO
Eight crossbred steers (BW 719.0 ± 65.0 kg) with ruminal and duodenal cannulae were used to examine the effect of trace mineral (TM) source on digestibility; ruminal and duodenal solubility of Cu, Zn, and Mn; and in vitro release of Cu, Zn, and Mn from the solid fraction of ruminal digesta. Experiment 1 determined the effect of TM source on DM and NDF digestibility in steers fed a corn silage and steam-flaked corn-based diet. Treatments consisted of 10 mg Cu, 20 mg Mn, and 30 mg Zn/kg DM from either sulfate TM (STM) or hydroxy TM (HTM) sources. Following a 14-d adaptation period, total fecal output was collected for 5 d. Dry matter digestibility was not affected by treatment, but NDF digestibility tended (P < 0.09) to be greater in HTM vs. STM supplemented steers. In Exp. 2, steers were fed a diet without supplemental Cu, Zn, or Mn for 19 d. Steers were then administrated a pulse dose of STM or HTM (2× the National Research Council requirements for Cu, Mn, and Zn) via the rumen fistula. Ruminal and duodenal samples were obtained at 2-h intervals starting at -4 and ending at 24 h relative to dosing. Ruminal soluble Cu and Zn concentrations were affected by treatment, time, and treatment × time. Soluble concentrations and percent soluble Cu and Zn in ruminal digesta increased (P < 0.05) above 0-h values for 10 h following dosing with STM, but not HTM. Concentrations of Cu and Zn in ruminal solid digesta were also affected by treatment, time, and treatment × time. Steers dosed with STM had greater (P < 0.05) solid digesta Cu concentrations at 2 and 4 h but lesser (P < 0.05) concentrations from 6 to 20 h post-dosing than those receiving HTM. Ruminal solid digesta Zn concentrations were greater (P < 0.05) in HTM vs. STM-dosed steers from 6 through 24 h post-dosing. Distribution of Mn in ruminal digesta was affected by TM source, but to a lesser extent than Zn and Cu. Duodenal soluble TM concentrations were variable and not affected by treatment. Binding strength of TM to ruminal solid digesta was estimated at 0, 6, and 12 h post-dosing using dialysis against chelating agents. The percentage of Cu and Zn released from ruminal solid digesta by dialysis against Tris-EDTA was greater (P < 0.05) at 12 h post-dosing from steers receiving HTM vs. STM. Results indicate that Cu and Zn from HTM have low solubility in the rumen and appear to be less tightly bound to ruminal solid digesta than Cu and Zn from STM.
Assuntos
Bovinos/fisiologia , Cobre/metabolismo , Suplementos Nutricionais , Oligoelementos/metabolismo , Zinco/metabolismo , Animais , Dieta/veterinária , Masculino , Rúmen/metabolismo , Silagem/análise , Solubilidade , Zea maysRESUMO
Water is the most important nutrient in animal nutrition; however, water intake is rarely measured. The objective of this study was to determine whether previously published water intake (WI) equations for beef cattle would accurately predict WI from four experiments conducted under tropical conditions. The experiments were conducted from 2013 to 2015. Nellore (Bos indicus) growing bulls (Exps. 1, 2, and 3) and heifers (Exp. 4) were used in the feedlot trials. In all experiments, animals were fed for ad libitum DMI. The WI, animal performance, diet composition, and environmental data were collected. The prediction of WI using the current published WI equations was evaluated by regressing predicted and measured WI values. The regression was evaluated using the two-hypothesis test: H0: ß0 = 0 and H0: ß1 = 1 and Ha: not H0. If both null hypotheses were not rejected, it was concluded that the tested equation accurately estimated WI. To develop a WI prediction equation based on the input variables, a leave-one-out cross-validation method was proposed. The proposed equation was evaluated using similar methodology described above. All previously published eight equations overestimated WI of cattle used in the four experiments conducted in southeast Brazil. A possible explanation for the overestimate of WI is that previously published WI equations were generated from data collected from predominantly Bos taurus cattle raised under temperate climates. From the data collected from experiments conducted with Nellore cattle in southeast Brazil, the proposed equation (WI = 9.449 + 0.190 × MBW + 0.271 × TMAX -0.259 × HU + 0.489 × DMI, where the MBW is the metabolic BW (kg0.75), TMAX is the maximum temperature (°C), HU is the humidity (%) and DMI in kg/d), more accurately to predicts WI of cattle raised under tropical conditions.
Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Bovinos/fisiologia , Ingestão de Líquidos , Animais , Brasil , Bovinos/crescimento & desenvolvimento , Dieta/veterinária , Feminino , Umidade , Masculino , Clima TropicalRESUMO
Four hundred crossbred steers were used in a randomized complete block design to investigate the effects of supplemental Zn source and concentration, and dietary Cr on performance and carcass characteristics of feedlot steers fed a steam-flaked corn-based finishing diet. Steers were blocked by initial BW within cattle source (3 sources) and randomly assigned within block to 1 of 5 treatments. Before the initiation of the experiment, trace mineral supplement sources were analyzed for Zn and Cr. Zinc and Cr concentrations of the Zn sources were used to balance all dietary treatments to obtain correct Zn and Cr experimental doses. Treatments were the addition of: 1) 90 mg Zn/kg DM from ZnSO4 and 0.25 mg Cr/kg DM from Cr propionate (90ZS+Cr); 2) 30 mg Zn/kg DM from Zn hydroxychloride and 0.25 mg Cr/kg DM from Cr propionate (30ZH+Cr); 3) 90 mg Zn/kg DM from Zn hydroxychloride and 0.25 mg Cr/kg DM from Cr propionate (90ZH+Cr); 4) 60 mg Zn/kg DM from ZnSO4 and 30 mg Zn/kg DM from Zn methionine (90ZSM); and 5) 90 mg Zn/kg DM from Zn hydroxychloride (90ZH). Steers were individually weighed on d-2 and on 2 consecutive days at the end of the experiment. Initial liver biopsies were obtained from all steers at processing. Equal numbers of pen replicates per treatment were slaughtered at a commercial abattoir on day 162, 176, and 211; individual carcass data and final liver samples were collected. Total finishing dietary Zn and Cr concentrations were 118.4, 58.2, 114.2, 123.0, and 108.2 mg Zn/kg DM and 0.740, 0.668, 0.763, 0.767, and 0.461 mg Cr/kg DM, for treatments 1 to 5, respectively. Data were analyzed statistically using preplanned single degree of freedom contrasts. Steers receiving 90ZH+Cr had greater final BW (P < 0.04) and ADG (P < 0.03) when compared with steers receiving 90ZH. Additionally, hot carcass weight was 8.5 kg greater (P < 0.03) for 90ZH+Cr compared with 90ZH supplemented steers. Steers receiving 90ZH+Cr had greater longissimus muscle area when compared with steers receiving 90ZSM. Dry matter intake, G:F, morbidity and mortality, and all other carcass measurements were similar across treatments. These data indicate that under the conditions of this experiment, Zn source and concentration had no impact on live performance, liver Zn and Cu concentrations, and carcass characteristics. Supplemental Cr in diets containing 90 mg of supplemental Zn/kg DM from ZH improved final BW, ADG, and hot carcass weights.