Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2303: 415-425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34626397

RESUMO

Extracellular sulfatases (SULF1 and SULF2) selectively remove 6-O-sulfate groups (6OS) from heparan sulfate proteoglycans (HSPGs) and by this process control important interactions of HSPGs with extracellular factors including morphogens, growth factors, and extracellular matrix (ECM) components. The expression of SULF1 and SULF2 is dynamically regulated during development and is altered in pathological states such as glioblastoma (GBM), a highly malignant and highly invasive brain cancer. SULF2 protein is increased in an important subset of human GBM and it helps regulate receptor tyrosine kinase (RTK) signaling and tumor growth in a murine model of the disease. By altering ligand binding to HSPGs SULF2 has the potential to modify the extracellular availability of factors important in a number of cell processes including proliferation, chemotaxis, and migration. Diffuse invasion of malignant tumor cells into surrounding healthy brain is a characteristic feature of GBM that makes therapy challenging. Here, we describe methods to assess SULF2 expression in human tumor tissue and cell lines and how to relate this to tumor cell invasion.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Humanos , Camundongos , Transdução de Sinais , Sulfatases/genética , Sulfatases/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo
2.
Mol Cancer Ther ; 18(9): 1565-1576, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31270152

RESUMO

Amplification of the epidermal growth factor receptor gene (EGFR) represents one of the most commonly observed genetic lesions in glioblastoma (GBM); however, therapies targeting this signaling pathway have failed clinically. Here, using human tumors, primary patient-derived xenografts (PDX), and a murine model for GBM, we demonstrate that EGFR inhibition leads to increased invasion of tumor cells. Further, EGFR inhibitor-treated GBM demonstrates altered oxidative stress, with increased lipid peroxidation, and generation of toxic lipid peroxidation products. A tumor cell subpopulation with elevated aldehyde dehydrogenase (ALDH) levels was determined to comprise a significant proportion of the invasive cells observed in EGFR inhibitor-treated GBM. Our analysis of the ALDH1A1 protein in newly diagnosed GBM revealed detectable ALDH1A1 expression in 69% (35/51) of the cases, but in relatively low percentages of tumor cells. Analysis of paired human GBM before and after EGFR inhibitor therapy showed an increase in ALDH1A1 expression in EGFR-amplified tumors (P < 0.05, n = 13 tumor pairs), and in murine GBM ALDH1A1-high clones were more resistant to EGFR inhibition than ALDH1A1-low clones. Our data identify ALDH levels as a biomarker of GBM cells with high invasive potential, altered oxidative stress, and resistance to EGFR inhibition, and reveal a therapeutic target whose inhibition should limit GBM invasion.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Família Aldeído Desidrogenase 1/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dasatinibe/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Retinal Desidrogenase/metabolismo
3.
Mol Cancer Res ; 15(11): 1623-1633, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28778876

RESUMO

Glioblastoma (GBM) is the most common primary malignant brain tumor of adults and confers a poor prognosis due, in part, to diffuse invasion of tumor cells. Heparan sulfate (HS) glycosaminoglycans, present on the cell surface and in the extracellular matrix, regulate cell signaling pathways and cell-microenvironment interactions. In GBM, the expression of HS glycosaminoglycans and the enzymes that regulate their function are altered, but the actual HS content and structure are unknown. However, inhibition of HS glycosaminoglycan function is emerging as a promising therapeutic strategy for some cancers. In this study, we use liquid chromatography-mass spectrometry analysis to demonstrate differences in HS disaccharide content and structure across four patient-derived tumorsphere lines (GBM1, 5, 6, 43) and between two murine tumorsphere lines derived from murine GBM with enrichment of mesenchymal and proneural gene expression (mMES and mPN, respectively) markers. In GBM, the heterogeneous HS content and structure across patient-derived tumorsphere lines suggested diverse functions in the GBM tumor microenvironment. In GBM5 and mPN, elevated expression of sulfatase 2 (SULF2), an extracellular enzyme that alters ligand binding to HS, was associated with low trisulfated HS disaccharides, a substrate of SULF2. In contrast, other primary tumorsphere lines had elevated expression of the HS-modifying enzyme heparanase (HPSE). Using gene editing strategies to inhibit HPSE, a role for HPSE in promoting tumor cell adhesion and invasion was identified. These studies characterize the heterogeneity in HS glycosaminoglycan content and structure across GBM and reveal their role in tumor cell invasion.Implications: HS-interacting factors promote GBM invasion and are potential therapeutic targets. Mol Cancer Res; 15(11); 1623-33. ©2017 AACR.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Animais , Neoplasias Encefálicas/química , Linhagem Celular Tumoral , Cromatografia Líquida , Edição de Genes , Glioblastoma/química , Glucuronidase/genética , Humanos , Espectrometria de Massas , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , Transdução de Sinais , Sulfatases , Sulfotransferases/metabolismo , Microambiente Tumoral
4.
Oncotarget ; 7(48): 79101-79116, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27738329

RESUMO

Abnormal activation of the epidermal growth factor receptor (EGFR) due to a deletion of exons 2-7 of EGFR (EGFRvIII) is a common alteration in glioblastoma (GBM). While this alteration can drive gliomagenesis, tumors harboring EGFRvIII are heterogeneous. To investigate the role for EGFRvIII activation in tumor phenotype we used a neural progenitor cell-based murine model of GBM driven by EGFR signaling and generated tumor progenitor cells with high and low EGFRvIII activation, pEGFRHi and pEGFRLo. In vivo, ex vivo, and in vitro studies suggested a direct association between EGFRvIII activity and increased tumor cell proliferation, decreased tumor cell adhesion to the extracellular matrix, and altered progenitor cell phenotype. Time-lapse confocal imaging of tumor cells in brain slice cultures demonstrated blood vessel co-option by tumor cells and highlighted differences in invasive pattern. Inhibition of EGFR signaling in pEGFRHi promoted cell differentiation and increased cell-matrix adhesion. Conversely, increased EGFRvIII activation in pEGFRLo reduced cell-matrix adhesion. Our study using a murine model for GBM driven by a single genetic driver, suggests differences in EGFR activation contribute to tumor heterogeneity and aggressiveness.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/diagnóstico por imagem , Deleção de Sequência , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ativação Enzimática , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Microscopia Confocal , Transplante de Neoplasias , Fosforilação , Imagem com Lapso de Tempo
5.
Methods Mol Biol ; 1229: 507-16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25325976

RESUMO

Extracellular sulfatases (SULF1 and SULF2) selectively remove 6-O-sulfate groups from heparan sulfate proteoglycans (HSPGs) and by this process control important interactions of HSPGs with extracellular factors including morphogens, growth factors, and extracellular matrix components. The expression of SULF1 and SULF2 is dynamically regulated during development and is altered in pathological states such as glioblastoma (GBM), a highly malignant and highly invasive brain cancer. SULF2 protein is increased in an important subset of human GBM and it helps regulate receptor tyrosine kinase signaling and tumor growth in a murine model of the disease. By altering ligand binding to HSPGs, SULF2 has the potential to modify the extracellular availability of factors important in a number of cell processes including proliferation, chemotaxis, and migration. Diffuse invasion of malignant tumor cells into surrounding healthy brain is a characteristic feature of GBM that makes therapy challenging. Here, we describe methods to assess SULF2 expression in human tumor tissue and cell lines and how to relate this to tumor cell invasion.


Assuntos
Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Ensaios Enzimáticos/métodos , Glioblastoma/enzimologia , Glioblastoma/patologia , Sulfatases/metabolismo , Animais , Neoplasias Encefálicas/genética , Movimento Celular , DNA Complementar/biossíntese , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Camundongos , Invasividade Neoplásica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Esferoides Celulares/patologia , Sulfatases/genética
6.
FEBS J ; 280(10): 2399-417, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23281850

RESUMO

Glioblastoma, a malignant brain cancer, is characterized by abnormal activation of receptor tyrosine kinase signalling pathways and a poor prognosis. Extracellular proteoglycans, including heparan sulfate and chondroitin sulfate, play critical roles in the regulation of cell signalling and migration via interactions with extracellular ligands, growth factor receptors and extracellular matrix components, as well as intracellular enzymes and structural proteins. In cancer, proteoglycans help drive multiple oncogenic pathways in tumour cells and promote critical tumour-microenvironment interactions. In the present review, we summarize the evidence for proteoglycan function in gliomagenesis and examine the expression of proteoglycans and their modifying enzymes in human glioblastoma using data obtained from The Cancer Genome Atlas (http://cancergenome.nih.gov/). Furthermore, we demonstrate an association between specific proteoglycan alterations and changes in receptor tyrosine kinases. Based on these data, we propose a model in which proteoglycans and their modifying enzymes promote receptor tyrosine kinase signalling and progression in glioblastoma, and we suggest that cancer-associated proteoglycans are promising biomarkers for disease and therapeutic targets.


Assuntos
Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Proteoglicanas/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Movimento Celular , Receptores ErbB/genética , Receptores ErbB/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Proteoglicanas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Sulfatases , Sulfotransferases/genética , Sulfotransferases/metabolismo , Microambiente Tumoral
7.
PLoS One ; 7(8): e43339, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22937035

RESUMO

Glioblastoma (GBM) is a highly malignant brain tumor with a dismal prognosis. Gene expression profiling of GBM has revealed clinically relevant tumor subtypes, and this provides exciting opportunities to better understand disease pathogenesis. Results from an increasing number of studies demonstrate a role for the immune response in cancer progression, yet it is unclear how the immune response differs across tumor subtypes and how it affects outcome. Utilizing gene expression data from The Cancer Genome Atlas Project and the Gene Expression Omnibus database, we demonstrate an enrichment of immune response-related gene expression in the mesenchymal subtype of adult GBM (n = 173) and pediatric high-grade gliomas (n = 53). In an independent cohort of pediatric astrocytomas (n = 24) from UCSF, we stratified tumors into subtypes and confirmed these findings. Using novel immune cell-specific gene signatures we demonstrate selective enrichment of microglia/macrophage-related genes in adult and pediatric GBM tumors of the mesenchymal subtype. Furthermore, immunostaining of adult GBM tumors showed significantly higher cell numbers of microglia/macrophages in mesenchymal versus non-mesenchymal tumors (p = 0.04). Interestingly, adult GBM tumors with the shortest survival had significant enrichment of microglia/macrophage-related genes but this was not true for pediatric GBMs. Consistent with an association with poor outcome, immune response-related genes were highly represented in an adult poor prognosis gene signature, with the expression of genes related to macrophage recruitment and activation being most strongly associated with survival (p<0.05) using CoxBoost multivariate modeling. Using a microglia/macrophage high gene signature derived from quantification of tumor-infiltrating cells in adult GBM, we identified enrichment of genes characteristic of CD4 T cells, granulocytes, and microglia/macrophages (n = 573). These studies support a role for the immune response, particularly the microglia/macrophage response, in the biology of an important subset of GBM. Identification of this subset may be important for future therapeutic stratification.


Assuntos
Astrocitoma/metabolismo , Glioblastoma/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Adolescente , Feminino , Humanos , Técnicas In Vitro , Masculino
8.
Haematologica ; 96(2): 213-20, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20971815

RESUMO

BACKGROUND: Despite the excellent responses to imatinib therapy observed in patients with chronic phase chronic myeloid leukemia, approximately 25% of patients display primary resistance or suboptimal response. The OCT-1 activity in mononuclear cells reflects the efficiency of active influx of imatinib. OCT-1 activity in mononuclear cells is highly variable between patients and significantly correlates with a patient's molecular response to imatinib treatment and overall survival. The present study examined whether cell lineage and BCR-ABL expression influenced OCT-1 activity. DESIGN AND METHODS: The OCT-1 activity and OCT-1 mRNA expression was assessed in pure populations of neutrophils, monocytes and lymphocytes recovered from chronic myeloid leukemia patients at diagnosis, in cytogenetic remission and normal individuals. The role of BCR-ABL on OCT-1 activity and differentiation was examined in a cell line model of ectopic BCR-ABL expression. RESULTS: The OCT-1 activity and OCT-1 mRNA expression was highest in the neutrophil population and lowest in lymphocytes (P<0.05). This was observed for patients at diagnosis, in cytogenetic remission and normal individuals. Interestingly, neutrophil OCT-1 activity was not significantly different between patients at diagnosis, in remission and normal donors. This was also observed for monocytes and lymphocytes. Furthermore, OCT-1 activity in mononuclear cells was significantly correlated with the OCT-1 activity in neutrophils (P=0.001). In a cell line model in which BCR-ABL was ectopically expressed, we found no evidence that BCR-ABL directly affected OCT-1 expression and function. However, BCR-ABL stimulated granulocyte differentiation which, in turn, led to significantly increased OCT-1 activity (P=0.024). CONCLUSIONS: These studies suggest that the predictive OCT-1 activity in patient mononuclear cells is strongly related to cell lineage, particularly the presence of neutrophils in the peripheral blood. Furthermore, BCR-ABL expression is unlikely to directly influence OCT-1 activity but may have an indirect role by enhancing granulocyte differentiation.


Assuntos
Linhagem da Célula , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Linfócitos/metabolismo , Monócitos/metabolismo , Neutrófilos/metabolismo , Transportador 1 de Cátions Orgânicos/metabolismo , Western Blotting , Estudos de Casos e Controles , Ciclo Celular , Diferenciação Celular , Proteínas de Fusão bcr-abl/genética , Humanos , Imunofenotipagem , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Transportador 1 de Cátions Orgânicos/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Blood ; 116(15): 2776-8, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20634379

RESUMO

The functional activity of the organic cation transporter 1 (OCT-1) protein in chronic myeloid leukemia (CML) mononuclear cells (MNCs) is highly predictive of molecular response in imatinib treated patients. Here we investigate whether the MNC OCT-1 activity (OA) provides a surrogate indicator of effective targeting of the more immature CD34(+) cells. While confirming our previous findings that high MNC OA is significantly associated with the achievement of major molecular response (MMR; P = .017), the present studies found no relationship between high CD34(+) OA and the achievement of MMR. Furthermore, no correlation was found between the MNC OA and the CD34(+) OA in matched CML samples. These results suggest that the predictive value of the MNC OA may primarily reflect the effective targeting and subsequent reduction of mature CML cells. Therefore kinase inhibition in these mature cells, and not the CD34(+) cells, may be the key determinant of response in CML.


Assuntos
Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Transportador 1 de Cátions Orgânicos/metabolismo , Piperazinas/farmacocinética , Piperazinas/uso terapêutico , Pirimidinas/farmacocinética , Pirimidinas/uso terapêutico , Antígenos CD34/metabolismo , Benzamidas , Humanos , Mesilato de Imatinib , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Células Progenitoras Mieloides/efeitos dos fármacos , Células Progenitoras Mieloides/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...