Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Pathogens ; 12(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38133307

RESUMO

West Nile virus (WNV) is one of the most widespread flaviviruses in the world, and in recent years, it has been frequently present in many Mediterranean and Eastern European countries. A combination of different conditions, such as a favourable climate and higher seasonal average temperatures, probably allowed its introduction and spread to new territories. In Switzerland, autochthonous cases of WNV have never been reported, and the virus was not detected in mosquito vectors until 2022, despite an entomological surveillance in place in Canton Ticino, southern Switzerland, since 2010. In 2022, 12 sites were monitored from July to October, using BOX gravid mosquito traps coupled with honey-baited FTA cards. For the first time, we could detect the presence of WNV in FTA cards and mosquitoes in 8 out of the 12 sampling sites monitored, indicating an unexpectedly widespread circulation of the virus throughout the territory. Positive findings were recorded from the beginning of August until mid-October 2022, and whole genome sequencing analysis identified a lineage 2 virus closely related to strains circulating in Northern Italy. The entomological surveillance has proved useful in identifying viral circulation in advance of possible cases of WNV infection in humans or horses.

2.
Viruses ; 15(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005942

RESUMO

When infecting humans, Andes orthohantavirus (ANDV) may cause a severe disease called hantavirus cardiopulmonary syndrome (HCPS). Following non-specific symptoms, the infection may progress to a syndrome of hemorrhagic fever combined with hyper-acute cardiopulmonary failure. The case fatality rate ranges between 25-40%, depending on the outbreak. In this study, we present the follow-up of a male patient who recovered from HCPS six years ago. We demonstrate that the ANDV genome persists within the reproductive tract for at least 71 months. Genome sequence analysis early and late after infection reveals a low number of mutations (two single nucleotide variants and one deletion), suggesting limited replication activity. We can exclude the integration of the viral genome into the host genome, since the treatment of the specimen with RNAse led to a loss of signal. We demonstrate a long-lasting, strong neutralizing antibody response using pseudovirions expressing the ANDV glycoprotein. Taken together, our results show that ANDV has the potential for sexual transmission.


Assuntos
Infecções por Hantavirus , Orthohantavírus , Humanos , Masculino , Orthohantavírus/genética , Sêmen , Anticorpos Neutralizantes , RNA Viral/genética
3.
Sci Rep ; 13(1): 15718, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735604

RESUMO

Proper disinfection and inactivation of highly pathogenic viruses is an essential component of public health and prevention. Depending on environment, surfaces, and type of contaminant, various methods of disinfection must be both efficient and available. To test both established and novel chemical disinfectants against risk group 4 viruses in our maximum containment facility, we developed a standardized protocol and assessed the chemical inactivation of the two Ebola virus variants Mayinga and Makona suspended in two different biological soil loads. Standard chemical disinfectants ethanol and sodium hypochlorite completely inactivate both Ebola variants after 30 s in suspension at 70% and 0.5% v/v, respectively, concentrations recommended for disinfection by the World Health Organization. Additionally, peracetic acid is also inactivating at 0.2% v/v under the same conditions. Continued vigilance and optimization of current disinfection protocols is extremely important due to the continuous presence of Ebola virus on the African continent and increased zoonotic spillover of novel viral pathogens. Furthermore, to facilitate general pandemic preparedness, the establishment and sharing of standardized protocols is very important as it allows for rapid testing and evaluation of novel pathogens and chemical disinfectants.


Assuntos
Desinfetantes , Ebolavirus , Doença pelo Vírus Ebola , Humanos , Desinfetantes/farmacologia , Doença pelo Vírus Ebola/prevenção & controle , Desinfecção , Solo
4.
Clin Microbiol Infect ; 29(12): 1587-1594, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37661067

RESUMO

OBJECTIVES: To report 5-year persistence and avidity of antibodies produced by the live-attenuated recombinant vesicular stomatitis virus (rVSV) expressing the Zaire Ebolavirus (ZEBOV) glycoprotein (GP), known as rVSV-ZEBOV (Ervebo®). METHODS: Healthy adults vaccinated with 300,000 or 10-50 million plaque-forming units of rVSV-ZEBOV in the WHO-coordinated trials of 2014-2015 were followed for up to 4 (Lambaréné, Gabon) and 5 (Geneva, Switzerland) years. We report seropositivity rates, geometric mean titres (GMTs), and population distribution of ZEBOV-GP ELISA IgG antibodies, neutralizing antibodies (pseudovirus and live-virus neutralization) and antibody avidity; the primary outcome was ZEBOV-GP ELISA IgG GMTs at 4 or 5 years compared with 1 year (Y1) after immunization. RESULTS: Among the 168 eligible vaccinees (Geneva: 97 and Lambaréné: 71) enrolled 1 year post-immunization, 146 (87%) remained enrolled at 4 years (Geneva: n = 88, Lambaréné: n = 58), and 84 (87%, Geneva) at 5 years post-vaccination. ZEBOV-GP ELISA IgG GMTs plateaued, with no declining trend from 1 year through the last time point assessed (1147.8 [95% CI 874.3-1507.0] at Y1 versus 1548.1 [95% CI 1136.6-2108.5] at Y5 in Geneva volunteers receiving ≥10 million plaque-forming units of rVSV-ZEBOV), their avidity matching that of ZEBOV convalescents. Live-virus neutralizing antibodies were detected for shorter periods and in fewer vaccinees (53/95 [56%] at Y1 versus 35/84 [42%] at Y5 in Geneva volunteers, all dose levels). DISCUSSION: Titres at Y1 emerged as a correlate of antibody persistence at Y5. The findings of persistent ZEBOV-GP ELISA IgG titres yet shorter-lasting, lower titres of live-virus neutralizing antibodies suggest the contribution of antibody-mediated protective mechanisms other than neutralization. Long-term clinical efficacy of rVSV-ZEBOV, however, requires further study.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Estomatite Vesicular , Adulto , Animais , Humanos , Ebolavirus/genética , Formação de Anticorpos , República Democrática do Congo , Anticorpos Antivirais , Vacinação , Anticorpos Neutralizantes , Imunoglobulina G , Anticorpos Bloqueadores
6.
Sci Rep ; 13(1): 5537, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016030

RESUMO

Clinical studies have proven antiviral effectiveness of treatment with a Designed Ankyrin Repeat Protein (DARPin) specific against the spike protein of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). More information on transport mechanisms and efficiency to the site of action is desirable. Transepithelial migration through air-liquid interface (ALI) cultures of reconstituted human bronchial epithelia (HBE) was assessed by Enzyme-Linked Immunosorbent Assays and Confocal Laser Scanning Microscopy for different DARPin designs in comparison to a monoclonal antibody. Antiviral efficacy against authentic SARS-CoV-2, applied apically on HBE, was investigated based on viral titers and genome equivalents, after administration of therapeutic candidates on the basal side. Transepithelial translocation of all DARPin candidates and the monoclonal antibody was efficient and dose dependent. Small DARPins and the antibody migrated more efficiently than larger molecules, indicating different transport mechanisms involved. Microscopic analyses support this, demonstrating passive paracellular transport of smaller DARPins and transcellular migration of the larger molecules. All therapeutic candidates applied to the basal side of HBE conferred effective protection against SARS-CoV-2 infection. In summary, we have shown that DARPins specific against SARS-CoV-2 translocate across intact airway epithelia and confer effective protection against infection and viral replication.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteínas de Repetição de Anquirina Projetadas , Mucosa Respiratória , Anticorpos Monoclonais , Antivirais/farmacologia
7.
Biomed Pharmacother ; 150: 113058, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35658229

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic with unprecedented economic and societal impact. Currently, several vaccines are available and multitudes of antiviral treatments have been proposed and tested. Although many of the vaccines show clinical efficacy, they are not equally accessible worldwide. Additionally, due to the continuous emergence of new variants and generally short duration of immunity, the development of effective antiviral treatments remains of the utmost importance. Since the emergence of SARS-CoV-2, substantial efforts have been undertaken to repurpose existing drugs for accelerated clinical testing and emergency use authorizations. However, drug-repurposing studies using cellular assays often identify hits that later prove ineffective clinically, highlighting the need for more complex screening models. To this end, we evaluated the activity of single compounds that have either been tested clinically or already undergone extensive preclinical profiling, using a standardized in vitro model of human nasal epithelium. Furthermore, we also evaluated drug combinations based on a sub-maximal concentration of molnupiravir. We report the antiviral activity of 95 single compounds and 30 combinations. We show that only a few single agents are highly effective in inhibiting SARS-CoV-2 replication while selected drug combinations containing 10 µM molnupiravir boosted antiviral activity compared to single compound treatment. These data indicate that molnupiravir-based combinations are worthy of further consideration as potential treatment strategies against coronavirus disease 2019 (COVID-19).


Assuntos
Tratamento Farmacológico da COVID-19 , Antivirais/farmacologia , Antivirais/uso terapêutico , Citidina/análogos & derivados , Humanos , Hidroxilaminas , Mucosa Nasal , SARS-CoV-2
8.
Anal Chem ; 93(49): 16350-16359, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34852455

RESUMO

The need for tools that facilitate rapid detection and continuous monitoring of SARS-CoV-2 variants of concern (VOCs) is greater than ever, as these variants are more transmissible and therefore increase the pressure of COVID-19 on healthcare systems. To address this demand, we aimed at developing and evaluating a robust and fast diagnostic approach for the identification of SARS-CoV-2 VOC-associated spike gene mutations. Our diagnostic assays detect the E484K and N501Y single-nucleotide polymorphisms (SNPs) as well as a spike gene deletion (HV69/70) and can be run on standard laboratory equipment or on the portable rapid diagnostic technology platform peakPCR. The assays achieved excellent diagnostic performance when tested with RNA extracted from culture-derived SARS-CoV-2 VOC lineages and clinical samples collected in Equatorial Guinea, Central-West Africa. Simplicity of usage and the relatively low cost are advantages that make our approach well suitable for decentralized and rapid testing, especially in resource-limited settings.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19 , Guiné Equatorial/epidemiologia , Deleção de Genes , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/classificação
9.
Microorganisms ; 9(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203936

RESUMO

Ecological changes, population movements and increasing urbanization promote the expansion of hantaviruses, placing humans at high risk of virus transmission and consequent diseases. The currently limited therapeutic options make the development of antiviral strategies an urgent need. Ribavirin is the only antiviral used currently to treat hemorrhagic fever with renal syndrome (HFRS) caused by Hantaan virus (HTNV), even though severe side effects are associated with this drug. We therefore investigated the antiviral activity of favipiravir, a new antiviral agent against RNA viruses. Both ribavirin and favipiravir demonstrated similar potent antiviral activity on HTNV infection. When combined, the efficacy of ribavirin is enhanced through the addition of low dose favipiravir, highlighting the possibility to provide better treatment than is currently available.

10.
Viruses ; 13(4)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923413

RESUMO

Hemorrhagic fever viruses, among them orthohantaviruses, arenaviruses and filoviruses, are responsible for some of the most severe human diseases and represent a serious challenge for public health. The current limited therapeutic options and available vaccines make the development of novel efficacious antiviral agents an urgent need. Inhibiting viral attachment and entry is a promising strategy for the development of new treatments and to prevent all subsequent steps in virus infection. Here, we developed a fluorescence-based screening assay for the identification of new antivirals against hemorrhagic fever virus entry. We screened a phytochemical library containing 320 natural compounds using a validated VSV pseudotype platform bearing the glycoprotein of the virus of interest and encoding enhanced green fluorescent protein (EGFP). EGFP expression allows the quantitative detection of infection and the identification of compounds affecting viral entry. We identified several hits against four pseudoviruses for the orthohantaviruses Hantaan (HTNV) and Andes (ANDV), the filovirus Ebola (EBOV) and the arenavirus Lassa (LASV). Two selected inhibitors, emetine dihydrochloride and tetrandrine, were validated with infectious pathogenic HTNV in a BSL-3 laboratory. This study provides potential therapeutics against emerging virus infection, and highlights the importance of drug repurposing.


Assuntos
Antivirais/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Infecções por Hantavirus/tratamento farmacológico , Orthohantavírus/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Humanos
11.
Allergy ; 76(3): 853-865, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32997812

RESUMO

BACKGROUND: Serological immunoassays that can identify protective immunity against SARS-CoV-2 are needed to adapt quarantine measures, assess vaccination responses, and evaluate donor plasma. To date, however, the utility of such immunoassays remains unclear. In a mixed-design evaluation study, we compared the diagnostic accuracy of serological immunoassays that are based on various SARS-CoV-2 proteins and assessed the neutralizing activity of antibodies in patient sera. METHODS: Consecutive patients admitted with confirmed SARS-CoV-2 infection were prospectively followed alongside medical staff and biobank samples from winter 2018/2019. An in-house enzyme-linked immunosorbent assay utilizing recombinant receptor-binding domain (RBD) of the SARS-CoV-2 spike protein was developed and compared to three commercially available enzyme-linked immunosorbent assays (ELISAs) targeting the nucleoprotein (N), the S1 domain of the spike protein (S1), and a lateral flow immunoassay (LFI) based on full-length spike protein. Neutralization assays with live SARS-CoV-2 were performed. RESULTS: One thousand four hundred and seventy-seven individuals were included comprising 112 SARS-CoV-2 positives (defined as a positive real-time PCR result; prevalence 7.6%). IgG seroconversion occurred between day 0 and day 21. While the ELISAs showed sensitivities of 88.4% for RBD, 89.3% for S1, and 72.9% for N protein, the specificity was above 94% for all tests. Out of 54 SARS-CoV-2 positive individuals, 96.3% showed full neutralization of live SARS-CoV-2 at serum dilutions ≥ 1:16, while none of the 6 SARS-CoV-2-negative sera revealed neutralizing activity. CONCLUSIONS: ELISAs targeting RBD and S1 protein of SARS-CoV-2 are promising immunoassays which shall be further evaluated in studies verifying diagnostic accuracy and protective immunity against SARS-CoV-2.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
13.
Virol J ; 17(1): 136, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907596

RESUMO

BACKGROUND: Coronaviruses (CoVs) were long thought to only cause mild respiratory and gastrointestinal symptoms in humans but outbreaks of Middle East Respiratory Syndrome (MERS)-CoV, Severe Acute Respiratory Syndrome (SARS)-CoV-1, and the recently identified SARS-CoV-2 have cemented their zoonotic potential and their capacity to cause serious morbidity and mortality, with case fatality rates ranging from 4 to 35%. Currently, no specific prophylaxis or treatment is available for CoV infections. Therefore we investigated the virucidal and antiviral potential of Echinacea purpurea (Echinaforce®) against human coronavirus (HCoV) 229E, highly pathogenic MERS- and SARS-CoVs, as well as the newly identified SARS-CoV-2, in vitro. METHODS: To evaluate the antiviral potential of the extract, we pre-treated virus particles and cells and evaluated remaining infectivity by limited dilution. Furthermore, we exposed cells to the extract after infection to further evaluate its potential as a prophylaxis and treatment against coronaviruses. We also determined the protective effect of Echinaforce® in re-constituted nasal epithelium. RESULTS: In the current study, we found that HCoV-229E was irreversibly inactivated when exposed to Echinaforce® at 3.2 µg/ml IC50. Pre-treatment of cell lines, however, did not inhibit infection with HCoV-229E and post-infection treatment had only a marginal effect on virus propagation at 50 µg/ml. However, we did observe a protective effect in an organotypic respiratory cell culture system by exposing pre-treated respiratory epithelium to droplets of HCoV-229E, imitating a natural infection. The observed virucidal activity of Echinaforce® was not restricted to common cold coronaviruses, as both SARS-CoV-1 and MERS-CoVs were inactivated at comparable concentrations. Finally, the causative agent of COVID-19, SARS-CoV-2 was also inactivated upon treatment with 50µg/ml Echinaforce®. CONCLUSIONS: These results show that Echinaforce® is virucidal against HCoV-229E, upon direct contact and in an organotypic cell culture model. Furthermore, MERS-CoV and both SARS-CoV-1 and SARS-CoV-2 were inactivated at similar concentrations of the extract. Therefore we hypothesize that Echinacea purpurea preparations, such as Echinaforce®, could be effective as prophylactic treatment for all CoVs due to their structural similarities.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Coronavirus Humano 229E/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Coronavirus/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Animais , COVID-19 , Linhagem Celular , Chlorocebus aethiops , Resfriado Comum/tratamento farmacológico , Resfriado Comum/virologia , Infecções por Coronavirus/virologia , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Vírus de RNA/efeitos dos fármacos , Ensaios Clínicos Controlados Aleatórios como Assunto , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Síndrome Respiratória Aguda Grave/virologia , Células Vero
14.
Viruses ; 12(5)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438629

RESUMO

Identification and characterization of viral genomes in vectors including ticks and mosquitoes positive for pathogens of great public health concern using metagenomic next generation sequencing (mNGS) has challenges. One such challenge is the ability to efficiently recover viral RNA which is typically dependent on sample processing. We evaluated the quantitative effect of six different extraction methods in recovering viral RNA in vectors using negative tick homogenates spiked with serial dilutions of tick-borne encephalitis virus (TBEV) and surrogate Langat virus (LGTV). Evaluation was performed using qPCR and mNGS. Sensitivity and proof of concept of optimal method was tested using naturally positive TBEV tick homogenates and positive dengue, chikungunya, and Zika virus mosquito homogenates. The amount of observed viral genome copies, percentage of mapped reads, and genome coverage varied among different extractions methods. The developed Method 5 gave a 120.8-, 46-, 2.5-, 22.4-, and 9.9-fold increase in the number of viral reads mapping to the expected pathogen in comparison to Method 1, 2, 3, 4, and 6, respectively. Our developed Method 5 termed ROVIV (Recovery of Viruses in Vectors) greatly improved viral RNA recovery and identification in vectors using mNGS. Therefore, it may be a more sensitive method for use in arbovirus surveillance.


Assuntos
Metagenômica/métodos , RNA Viral/genética , RNA Viral/metabolismo , Animais , Febre de Chikungunya , Chlorocebus aethiops , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/transmissão , Encefalite Transmitida por Carrapatos/virologia , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Mosquitos Vetores/virologia , Reação em Cadeia da Polimerase em Tempo Real , Carrapatos/virologia , Células Vero , Zika virus/genética , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
15.
Virology ; 543: 54-62, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32056847

RESUMO

Hantaviruses are rodent-borne hemorrhagic fever viruses leading to serious diseases. Viral attachment and entry represent the first steps in virus transmission and are promising targets for antiviral therapeutic intervention. Here we investigated receptor use in human airway epithelium of the Old and New World hantaviruses Hantaan virus (HTNV) and Andes virus (ANDV). Using a biocontained recombinant vesicular stomatitis virus pseudotype platform, we provide first evidence for a role of the cellular phosphatidylserine (PS) receptors of the T-cell immunoglobulin and mucin (TIM) protein family in HTNV and ANDV infection. In line with previous studies, HTNV, but not ANDV, was able to use glycosaminoglycan heparan sulfate and αvß3 integrin as co-receptors. In sum, our studies demonstrate for the first time that hantaviruses make use of apoptotic mimicry for infection of human airway epithelium, which may explain why these viruses can easily break the species barrier.


Assuntos
Vírus Hantaan/metabolismo , Glicoproteínas de Membrana/metabolismo , Orthohantavírus/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Mucosa Respiratória/virologia , Proteínas do Envelope Viral/metabolismo , Animais , Bacteriocinas/farmacologia , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Vírus Hantaan/efeitos dos fármacos , Vírus Hantaan/patogenicidade , Vírus Hantaan/fisiologia , Orthohantavírus/fisiologia , Haplorrinos , Heparitina Sulfato/farmacologia , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Humanos , Integrinas/metabolismo , Proteínas de Membrana/metabolismo , Mimetismo Molecular , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Mucosa Respiratória/metabolismo , Vesiculovirus/metabolismo , Vesiculovirus/fisiologia , Receptor Tirosina Quinase Axl
16.
Parasit Vectors ; 12(1): 554, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31753035

RESUMO

BACKGROUND: The threat of mosquito-borne diseases is increasing in continental Europe as demonstrated by several autochthonous chikungunya, dengue and West Nile virus outbreaks. In Switzerland, despite the presence of competent vectors, routine surveillance of arboviruses in mosquitoes is not being carried out, mainly due to the high costs associated with the need of a constant cold chain and laborious processing of thousands of mosquitoes. An alternative approach is using honey-baited nucleic acid preserving cards (FTA cards) to collect mosquito saliva that may be analysed for arboviruses. Here, we evaluate whether FTA cards could be used to detect potentially emerging viruses in an area of low virus prevalence in combination with an effective mosquito trap. METHODS: In a field trial in southern Switzerland we measured side-by-side the efficacy of the BG-Sentinel 2, the BG-GAT and the Box gravid trap to catch Aedes and Culex mosquitoes in combination with honey-baited FTA cards during 80 trapping sessions of 48 hours. We then screened both the mosquitoes and the FTA cards for the presence of arboviruses using reverse-transcription PCR. The efficacy of the compared trap types was evaluated using generalized linear mixed models. RESULTS: The Box gravid trap collected over 11 times more mosquitoes than the BG-GAT and BG-Sentinel 2 trap. On average 75.9% of the specimens fed on the honey-bait with no significant difference in feeding rates between the three trap types. From the total of 1401 collected mosquitoes, we screened 507 Aedes and 500 Culex females for the presence of arboviruses. A pool of six Cx. pipiens/Cx. torrentium mosquitoes and also the FTA card from the same Box gravid trap were positive for Usutu virus. Remarkably, only two of the six Culex mosquitoes fed on the honey-bait, emphasising the high sensitivity of the method. In addition, two Ae. albopictus collections but no FTA cards were positive for mosquito-only flaviviruses. CONCLUSIONS: Based on our results we conclude that honey-baited FTA cards, in combination with the Box gravid trap, are an effective method for arbovirus surveillance in areas of low prevalence, particularly where resources are limited for preservation and screening of individual mosquitoes.


Assuntos
Aedes/virologia , Arbovírus/isolamento & purificação , Culex/virologia , Entomologia/métodos , Técnicas de Diagnóstico Molecular/métodos , Mosquitos Vetores/virologia , Animais , Arbovírus/genética , Mel , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Suíça
17.
Virology ; 531: 57-68, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30852272

RESUMO

Hantaviruses are emerging rodent-borne negative-strand RNA viruses associated with severe human diseases. Zoonotic transmission occurs via aerosols of contaminated rodent excreta and cells of the human respiratory epithelium represent likely early targets. Here we investigated cellular factors involved in entry of the pathogenic Old and New World hantaviruses Hantaan virus (HTNV) and Andes virus (ANDV) into human respiratory epithelial cells. Screening of a kinase inhibitor library using a biocontained recombinant vesicular stomatitis virus pseudotype platform revealed differential requirement for host kinases for HTNV and ANDV entry and provided first hints for an involvement of macropinocytosis. Examination of a selected panel of well-defined inhibitors of endocytosis confirmed that both HTNV and ANDV enter human respiratory epithelial cells via a pathway that critically depends on sodium proton exchangers and actin, hallmarks of macropinocytosis. However, HTNV and ANDV differed in their individual requirements for regulatory factors of macropinocytosis, indicating virus-specific differences.


Assuntos
Endocitose , Células Epiteliais/virologia , Infecções por Hantavirus/virologia , Orthohantavírus/fisiologia , Mucosa Respiratória/virologia , Internalização do Vírus , Linhagem Celular , Células Epiteliais/enzimologia , Orthohantavírus/genética , Infecções por Hantavirus/enzimologia , Infecções por Hantavirus/genética , Infecções por Hantavirus/fisiopatologia , Interações Hospedeiro-Patógeno , Humanos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Mucosa Respiratória/metabolismo
18.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626681

RESUMO

Arenaviruses are a large family of emerging enveloped negative-strand RNA viruses that include several causative agents of viral hemorrhagic fevers. For cell entry, human-pathogenic arenaviruses use different cellular receptors and endocytic pathways that converge at the level of acidified late endosomes, where the viral envelope glycoprotein mediates membrane fusion. Inhibitors of arenavirus entry hold promise for therapeutic antiviral intervention and the identification of "druggable" targets is of high priority. Using a recombinant vesicular stomatitis virus pseudotype platform, we identified the clotrimazole-derivative TRAM-34, a highly selective antagonist of the calcium-activated potassium channel KCa3.1, as a specific entry inhibitor for arenaviruses. TRAM-34 specifically blocked entry of most arenaviruses, including hemorrhagic fever viruses, but not Lassa virus and other enveloped viruses. Anti-arenaviral activity was likewise observed with the parental compound clotrimazole and the derivative senicapoc, whereas structurally unrelated KCa3.1 inhibitors showed no antiviral effect. Deletion of KCa3.1 by CRISPR/Cas9 technology did not affect the antiarenaviral effect of TRAM-34, indicating that the observed antiviral effect of clotrimazoles was independent of the known pharmacological target. The drug affected neither virus-cell attachment, nor endocytosis, suggesting an effect on later entry steps. Employing a quantitative cell-cell fusion assay that bypasses endocytosis, we demonstrate that TRAM-34 specifically inhibits arenavirus-mediated membrane fusion. In sum, we uncover a novel antiarenaviral action of clotrimazoles that currently undergo in vivo evaluation in the context of other human diseases. Their favorable in vivo toxicity profiles and stability opens the possibility to repurpose clotrimazole derivatives for therapeutic intervention against human-pathogenic arenaviruses.IMPORTANCE Emerging human-pathogenic arenaviruses are causative agents of severe hemorrhagic fevers with high mortality and represent serious public health problems. The current lack of a licensed vaccine and the limited treatment options makes the development of novel antiarenaviral therapeutics an urgent need. Using a recombinant pseudotype platform, we uncovered that clotrimazole drugs, in particular TRAM-34, specifically inhibit cell entry of a range of arenaviruses, including important emerging human pathogens, with the exception of Lassa virus. The antiviral effect was independent of the known pharmacological drug target and involved inhibition of the unusual membrane fusion mechanism of arenaviruses. TRAM-34 and its derivatives currently undergo evaluation against a number of human diseases and show favorable toxicity profiles and high stability in vivo Our study provides the basis for further evaluation of clotrimazole derivatives as antiviral drug candidates. Their advanced stage of drug development will facilitate repurposing for therapeutic intervention against human-pathogenic arenaviruses.


Assuntos
Antivirais/farmacologia , Arenavirus/efeitos dos fármacos , Clotrimazol/farmacologia , Fusão de Membrana/efeitos dos fármacos , Células A549 , Animais , Infecções por Arenaviridae/tratamento farmacológico , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Endocitose/efeitos dos fármacos , Células HEK293 , Células HeLa , Febres Hemorrágicas Virais/tratamento farmacológico , Febres Hemorrágicas Virais/virologia , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Vírus Lassa/efeitos dos fármacos , Células Vero , Proteínas do Envelope Viral/metabolismo , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
19.
J Virol Methods ; 264: 51-54, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30513365

RESUMO

Working in accordance with biosafety level four practices is highly complex and time-consuming. Therefore, the respective laboratory protocols should be as uniform as possible, simple to perform and straightforward in readout. Here we describe the successful application of a standardized 24-well plate focus assay protocol for the titration of Zaire ebolavirus (two isolates), Marburg virus (three isolates), Lassa virus (two isolates), Crimean Congo hemorrhagic fever virus (one isolate), and tick-borne encephalitis virus (two isolates). Viral titers are determined based on a simple visual readout. The protocol exhibits high precision, with coefficients of variation for interassay variability ranging between 0.05 and 0.21 and those for intraassay variability between 0.08 and 0.23. All reagents required for the test, including primary and secondary antibodies, are commercially available, facilitating the establishment of the protocol in other laboratories.


Assuntos
Contenção de Riscos Biológicos/normas , Carga Viral , Virologia/métodos , Vírus/isolamento & purificação , Animais , Chlorocebus aethiops , Ebolavirus/isolamento & purificação , Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Indicadores e Reagentes , Vírus Lassa/isolamento & purificação , Marburgvirus/isolamento & purificação , Células Vero
20.
Virus Res ; 257: 120-124, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30316331

RESUMO

The increase of the human population is accompanied by growing numbers of livestock to feed this population, as well as by an increase of human invasion into natural habitats of wild animals. As a result, both animals and humans are becoming progressively vulnerable to infections with known (zoonotic) pathogens, but are also increasingly exposed to novel viruses. Global trade as well as climate changes can contribute to pathogen transmission, e.g. through import of infected vectors or expansion of habitats for arthropod vectors such as mosquitoes and midges. Infectious disease outbreaks, especially those by novel viruses, are generally unexpected, and therefore we should be prepared with tools and abilities for immediate action, including the identification of the causative agent, the evaluation of its pathogenic potential for animals and humans, and the fast development of diagnostic assays to allow contact tracing and quarantine measures. HONOURs is a Marie Sklodowska-Curie Actions Innovative Training Network (MSCA-ITN), teaching 15 talented young researchers to become "preparedness-experts". HONOURs, initiated in April 2017, involves 11 laboratories from 6 different European countries, all at the forefront of novel virus investigations and characterizations. The network includes surveillance experts in both the veterinary and the human health sector, who have developed and utilize highly sensitive virus discovery techniques, e.g. next generation sequencing based genomics and universal primers based PCR, to allow identification and characterization of novel viruses. Production of pure viral proteins, providing high-resolution structures, aids in the design of novel, fast and easy-to-use diagnostics. Organotypic in vitro cell cultures systems (e.g. pseudostratified human airway epithelia) provide tools for virus replication, if needed via a reverse genetics platform, and the production of virus stocks permits inoculation in animal models to examine disease, evaluate candidate vaccines, and fulfilment of the Koch's postulates. Scientists of the various institutes will provide training in the HONOURs network through specialized courses and workshops, combined with challenging research projects. The final aim of the network is to deliver 15 expert scientists, ready to act in case of the emergence of an epidemic.


Assuntos
Surtos de Doenças/prevenção & controle , Pesquisadores/educação , Ensino/organização & administração , Zoonoses/prevenção & controle , Academias e Institutos , Animais , Controle de Doenças Transmissíveis , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/virologia , Modelos Animais de Doenças , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Zoonoses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...