Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1438, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228786

RESUMO

Abdominal aortic aneurysms (AAAs) are prevalent with aging, and AAA rupture is associated with increased mortality. There is currently no effective medical therapy to prevent AAA rupture. The monocyte chemoattractant protein (MCP-1)/C-C chemokine receptor type 2 (CCR2) axis critically regulates AAA inflammation, matrix-metalloproteinase (MMP) production, and extracellular matrix (ECM) stability. We therefore hypothesized that a diet intervention that can modulate CCR2 axis may therapeutically impact AAA risk of rupture. Since ketone bodies (KBs) can trigger repair mechanisms in response to inflammation, we evaluated whether systemic ketosis in vivo could reduce CCR2 and AAA progression. Male Sprague-Dawley rats underwent surgical AAA formation using porcine pancreatic elastase and received daily ß-aminopropionitrile to promote AAA rupture. Rats with AAAs received either a standard diet, ketogenic diet (KD), or exogenous KBs (EKB). Rats receiving KD and EKB reached a state of ketosis and had significant reduction in AAA expansion and incidence of rupture. Ketosis also led to significantly reduced aortic CCR2 content, improved MMP balance, and reduced ECM degradation. Consistent with these findings, we also observed that Ccr2-/- mice have significantly reduced AAA expansion and rupture. In summary, this study demonstrates that CCR2 is essential for AAA expansion, and that its modulation with ketosis can reduce AAA pathology. This provides an impetus for future clinical studies that will evaluate the impact of ketosis on human AAA disease.


Assuntos
Aneurisma da Aorta Abdominal , Ruptura Aórtica , Cetose , Animais , Humanos , Masculino , Camundongos , Ratos , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/metabolismo , Ruptura Aórtica/patologia , Modelos Animais de Doenças , Regulação para Baixo , Matriz Extracelular/metabolismo , Inflamação/patologia , Cetose/patologia , Ratos Sprague-Dawley , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA