Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Russ J Genet ; 58(9): 1135-1144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119151

RESUMO

The changes in the telomere length caused by the terminal underreplication in the existing literature are related to depressive disorders. However, the use of the telomere length as a biomarker of depressive states is ambiguous, which is due to the effect of various environmental factors on both the psychoemotional state and cellular aging of an organism. In order to identify the possible use of the relative telomere length (RTL) measured in peripheral blood leukocytes as a biomarker of enhanced liability to depression prior to the clinical symptoms, as well as to determine the link between telomere length, sociodemographic factors, allelic variants of the genes involved in the regulation of telomere elongation, and depression level, the association analysis of reverse transcriptase (TERT rs7726159), telomerase RNA component (TERC rs1317082), and the CST complex encoding protein (OBFC1 rs2487999) gene polymorphisms was performed with RTL and depression level in mentally healthy individuals (N = 1065) aged 18-25 years. Together with genetic variants, the examined regression models included various sociodemographic parameters as predictors. As a result of statistical analysis, we failed to observe the association between RTL and individual differences in depression level in the studied sample. Nevertheless, multiple regression analysis allowed us to construct a statistically significant model of individual variance in RTL (P = 4.3е-4; r 2 = 0.018), which included rs7726159 in the TERT gene (P = 0.020; ß = 0.078) and such environmental predictors as age (P = 0.001; ß = -0.027) and place of residence in childhood (urban/rural area) (P = 0.048; ß = 0.063). The data obtained confirm the involvement of TERT gene variants and age in telomere length in mentally healthy individuals aged 18-25 years and indicate a negative effect of urban residency on telomere length shortening, which reflects the cellular aging of an organism.

2.
Vavilovskii Zhurnal Genet Selektsii ; 26(2): 179-181, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35434491

RESUMO

Nonverbal intelligence represents one of the components of brain cognitive functions, which uses visual images and nonverbal approaches for solving required tasks. Interaction between the nervous and immune systems plays a specif ic role in individual differences in brain cognitive functions. Therefore, the genes encoding pro- and antiinflammatory cytokines are prospective candidate genes in the study of nonverbal intelligence. Within the framework of the present study, we conducted the association analysis of six SNPs in the genes that encod proteins involved in inf lammatory response regulation in the central nervous system (CRP rs3093077, IL1А rs1800587, IL1B rs16944, TNF/ LTA rs1041981, rs1800629, and P2RX7 rs2230912), with nonverbal intelligence in mentally healthy young adults aged 18- 25 years without cognitive decline with inclusion of sex, ethnicity and the presence of the "risky" APOE ε4 allele as covariates. Considering an important role of environmental factors in the development of brain cognitive functions in general and nonverbal intelligence in particular, we conducted an analysis of gene-by-environment (G × E) interactions. As a result of a statistical analysis, rs1041981 and rs1800629 in the tumor necrosis factor gene (TNF) were shown to be associated with a phenotypic variance in nonverbal intelligence at the haplotype level (for АА-haplotype: ßST = 1.19; p = 0.033; pperm = 0.047) in carriers of the "risky" APOE ε4 allele. Gene-by-environment interaction models, which determined interindividual differences in nonverbal intelligence, have been constructed: sibship size (number of children in a family) and smoking demonstrated a modulating effect on association of the TNF/LTA (rs1041981) (ß = 2.08; ßST = 0.16; p = 0.001) and P2RX7 (rs2230912) (ß = -1.70; ßST = -0.10; p = 0.022) gene polymorphisms with nonverbal intelligence. The data obtained indicate that the effect of TNF/LTA on the development of cognitive functions is evident only in the presence of the "unfavorable" APOE ε4 variant and/or certain environmental conditions.

3.
Vavilovskii Zhurnal Genet Selektsii ; 25(8): 839-846, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35088019

RESUMO

In the contemporary high-tech society, spatial abilities predict individual life and professional success, especially in the STEM (Science, Technology, Engineering, and Mathematics) disciplines. According to neurobiological hypotheses, individual differences in cognitive abilities may be attributed to the functioning of genes involved in the regulation of neurogenesis and synaptic plasticity. In addition, genome-wide association studies identified rs17070145 located in the KIBRA gene, which was associated with individual differences in episodic memory. Considering a significant role of genetic and environmental components in cognitive functioning, the present study aimed to estimate the main effect of NGF (rs6330), NRXN1 (rs1045881, rs4971648), KIBRA (rs17070145), NRG1 (rs6994992), BDNF (rs6265), GRIN2B (rs3764030), APOE (rs7412, rs429358), and SNAP25 (rs363050) gene polymorphisms and to assess the effect of gene-environment interactions on individual differences in spatial ability in individuals without cognitive decline aged 18-25 years (N = 1011, 80 % women). Spatial abilities were measured using a battery of cognitive tests including the assessment of "3D shape rotation" (mental rotation). Multiple regression analysis, which was carried out in the total sample controlling for sex, ethnicity and the presence of the "risk" APOE ε4 allele, demonstrated the association of the rs17070145 Т-allele in the KIBRA gene with enhanced spatial ability (ß = 1.32; pFDR = 0.037) compared to carriers of the rs17070145 CC-genotype. The analysis of gene-environment interactions revealed that nicotine smoking (ß = 3.74; p = 0.010) and urban/rural residency in childhood (ß = -6.94; p = 0.0002) modulated the association of KIBRA rs17070145 and АРОЕ (rs7412, rs429358) gene variants with individual differences in mental rotation, respectively. The data obtained confirm the effect of the KIBRA rs17070145 Т-allele on improved cognitive functioning and for the first time evidence the association of the mentioned genetic variant with spatial abilities in humans. A "protective" effect of the APOE ε2 allele on enhanced cognitive functioning is observed only under certain conditions related to childhood rearing.

4.
Vavilovskii Zhurnal Genet Selektsii ; 24(1): 87-95, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33659785

RESUMO

The present review describes longitudinal studies of cognitive traits and functions determining the causes of their variations and their possible correction to prevent cognitive impairment. The present study reviews the involvement of such environmental factors as nutrition, prenatal maternal stress, social isolation and others in cognitive functioning. The role of epigenetic factors in the implementation of environmental effects in cognitive characteristics is revealed. Considering the epigenome significance, several studies were focused on the design of substances affecting methylation and histone modification, which can be used for the treatment of cognitive disorders. The appropriate correction of epigenetic factors related to environmental differences in cognitive abilities requires to determine the mechanisms of chromatin modifications and variations in DNA methylation. Transposons representing stress-sensitive DNA elements appeared to mediate the environmental influence on epigenetic modifications. They can explain the mechanism of transgenerational transfer of information on cognitive abilities. Recently, large-scale meta-analyses based on the results of studies, which identified genetic associations with various cognitive traits, were carried out. As a result, the role of genes actively expressed in the brain, such as BDNF, COMT, CADM2, CYP2D6, APBA1, CHRNA7, PDE1C, PDE4B, and PDE4D in cognitive abilities was revealed. The association between cognitive functioning and genes, which have been previously involved in developing psychiatric disorders (MEF2C, CYP2D6, FAM109B, SEPT3, NAGA, TCF20, NDUFA6 genes), was revealed, thus indicating the role of the similar mechanisms of genetic and neural networks in both normal cognition and cognitive impairment. An important role in both processes belongs to common epigenetic factors. The genes involved in DNA methylation (DNMT1, DNMT3B, and FTO), histone modifications (CREBBP, CUL4B, EHMT1, EP300, EZH2, HLCS, HUWE1, KAT6B, KMT2A, KMT2D, KMT2C, NSD1, WHSC1, and UBE2A) and chromatin remodeling (ACTB, ARID1A, ARID1B, ATRX, CHD2, CHD7, CHD8, SMARCA2, SMARCA4, SMARCB1, SMARCE1, SRCAP, and SS18L1) are associated with increased risk of psychiatric diseases with cognitive deficiency together with normal cognitive functioning. The data on the correlation between transgenerational epigenetic inheritance of cognitive abilities and the insert of transposable elements in intergenic regions is discussed. Transposons regulate genes functioning in the brain due to the processing of their transcripts into non-coding RNAs. The content, quantity and arrangement of transposable elements in human genome, which do not affect changes in nucleotide sequences of protein encoding genes, but affect their expression, can be transmitted to the next generation.

5.
Artigo em Russo | MEDLINE | ID: mdl-30335081

RESUMO

Molecular genetic studies of attention deficit hyperactivity disorder (ADHD) have demonstrated the involvement of multiple genes in the etiology of ADHD. A polygenic hypothesis of the etiopathogenesis was formulated without clear knowledge of common mechanisms of ADHD development. Twin, family and adoption studies have established the heritability of 70-80% for ADHD. Association studies have shown the relationship between ADHD and genes of dopaminergic (DRD4, DRD5, SLC6A3), serotoninergic (HTR1B, 5-HTTLPR), glutamatergic (mGluR, NDRG2) systems, metabolic pathways (SLC2A3, SLC6A4, CDH13, CFOD1, GFOD1), membrane proteins (KChIP1, ITGA1, SNAP-25) as well as tumour-suppressor (NDRG2, NF1) and cytokine genes. The marked comorbidity of ADHD with other psychiatric disorders and shared genetic risk factors were determined. Studies of a role of copy number variations (CNVs) provided more promising evidence that suggested the possible involvement of retroelements as the unifying factors of disease etiopathogenesis. Transposons, which are sensitive to stress, may cause CNVs and are key regulators of brain development and functioning. The dysregulation of transposons is thought to be important in changes in tuning of gene regulatory pathways and epigenetic regulation of neurons in ADHD that may be a common principle underlying the heterogeneous nature of ADHD. Research on noncoding RNAs will help to confirm the hypothesis and develop diagnostic algorithms of examination of ADHD patients as an important step in the implementation of personalized medicine in psychiatry.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Epigênese Genética , Transdução de Sinais , Transtorno do Deficit de Atenção com Hiperatividade/genética , Variações do Número de Cópias de DNA , Predisposição Genética para Doença , Humanos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...