Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 105, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167825

RESUMO

The infant gut microbiome is impacted by early-life feeding, as human milk oligosaccharides (HMOs) found in breastmilk cannot be digested by infants and serve as nutrients for their gut bacteria. While the vast majority of HMO-utilization research has focused on Bifidobacterium species, recent studies have suggested additional HMO-utilizers, mostly Bacteroides, yet their utilization mechanism is poorly characterized. Here, we investigate Bacteroides dorei isolates from breastfed-infants and identify that polysaccharide utilization locus (PUL) 33 enables B. dorei to utilize sialylated HMOs. We perform transcriptional profiling and identity upregulated genes when growing on sialylated HMOs. Using CRISPR-Cas12 to knock-out four PUL33 genes, combined with complementation assays, we identify GH33 as the critical gene in PUL33 for sialylated HMO-utilization. This demonstration of an HMO-utilization system by Bacteroides species isolated from infants opens the way to further characterization of additional such systems, to better understand HMO-utilization in the infant gut.


Assuntos
Sistemas CRISPR-Cas , Leite Humano , Lactente , Humanos , Sistemas CRISPR-Cas/genética , Oligossacarídeos , Bacteroides/genética
2.
Nat Commun ; 15(1): 894, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291346

RESUMO

Breast milk contains human milk oligosaccharides (HMOs) that cannot be digested by infants, yet nourish their developing gut microbiome. While Bifidobacterium are the best-known utilizers of individual HMOs, a longitudinal study examining the evolving microbial community at high-resolution coupled with mothers' milk HMO composition is lacking. Here, we developed a high-throughput method to quantify Bifidobacterium longum subsp. infantis (BL. infantis), a proficient HMO-utilizer, and applied it to a longitudinal cohort consisting of 21 mother-infant dyads. We observed substantial changes in the infant gut microbiome over the course of several months, while the HMO composition in mothers' milk remained relatively stable. Although Bifidobacterium species significantly influenced sample variation, no specific HMOs correlated with Bifidobacterium species abundance. Surprisingly, we found that BL. infantis colonization began late in the breastfeeding period both in our cohort and in other geographic locations, highlighting the importance of focusing on BL. infantis dynamics in the infant gut.


Assuntos
Bifidobacterium longum , Sistemas Pré-Pagos de Saúde , Lactente , Feminino , Humanos , Estudos Longitudinais , Leite Humano , Bifidobacterium , Oligossacarídeos
3.
Cell Host Microbe ; 30(5): 599-600, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35550660

RESUMO

Preterm birth can have long-term health consequences, and the gut microbiome is an important contributor to infant health. In this issue of Cell Host & Microbe, Samara et al. explore the effects of probiotics treatment on the infant gut microbiome of extremely premature infants.


Assuntos
Microbioma Gastrointestinal , Nascimento Prematuro , Probióticos , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Gravidez , Probióticos/uso terapêutico
4.
Dev Cell ; 56(12): 1804-1817.e7, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34010629

RESUMO

Single-cell assays have revealed the importance of heterogeneity in many biological systems. However, limited sensitivity is a major hurdle for uncovering cellular variation. To overcome it, we developed CloneSeq, combining clonal expansion inside 3D hydrogel spheres and droplet-based RNA sequencing (RNA-seq). We show that clonal cells maintain similar transcriptional profiles and cell states. CloneSeq of lung cancer cells revealed cancer-specific subpopulations, including cancer stem-like cells, that were not revealed by scRNA-seq. Clonal expansion within 3D soft microenvironments supported cellular stemness of embryonic stem cells (ESCs) even without pluripotent media, and it improved epigenetic reprogramming efficiency of mouse embryonic fibroblasts. CloneSeq of ESCs revealed that the differentiation decision is made early during Oct4 downregulation and is maintained during early clonal expansion. Together, we show CloneSeq can be adapted to different biological systems to discover rare subpopulations by leveraging the enhanced sensitivity within clones.


Assuntos
Técnicas de Cultura de Células/métodos , Linhagem da Célula/genética , Reprogramação Celular/genética , Análise de Célula Única/métodos , Células-Tronco Embrionárias/citologia , Epigênese Genética/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Hidrogéis/química , Células-Tronco Neoplásicas/citologia , Fator 3 de Transcrição de Octâmero , RNA-Seq/métodos , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...