Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Pflugers Arch ; 476(7): 1109-1123, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38625371

RESUMO

The myocardium is a highly oxidative tissue in which mitochondria are essential to supply the energy required to maintain pump function. When pathological hypertrophy develops, energy consumption augments and jeopardizes mitochondrial capacity. We explored the cardiac consequences of chronic swimming training, focusing on the mitochondrial network, in spontaneously hypertensive rats (SHR). Male adult SHR were randomized to sedentary or trained (T: 8-week swimming protocol). Blood pressure and echocardiograms were recorded, and hearts were removed at the end of the training period to perform molecular, imaging, or isolated mitochondria studies. Swimming improved cardiac midventricular shortening and decreased the pathological hypertrophic marker atrial natriuretic peptide. Oxidative stress was reduced, and even more interesting, mitochondrial spatial distribution, dynamics, function, and ATP were significantly improved in the myocardium of T rats. In the signaling pathway triggered by training, we detected an increase in the phosphorylation level of both AKT and glycogen synthase kinase-3 ß, key downstream targets of insulin-like growth factor 1 signaling that are crucially involved in mitochondria biogenesis and integrity. Aerobic exercise training emerges as an effective approach to improve pathological cardiac hypertrophy and bioenergetics in hypertension-induced cardiac hypertrophy.


Assuntos
Mitocôndrias Cardíacas , Condicionamento Físico Animal , Ratos Endogâmicos SHR , Animais , Masculino , Ratos , Mitocôndrias Cardíacas/metabolismo , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Natação/fisiologia , Estresse Oxidativo , Transdução de Sinais/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Pressão Sanguínea/fisiologia , Fator Natriurético Atrial/metabolismo
2.
Eur Heart J Suppl ; 23(Suppl B): B12-B14, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34248428

RESUMO

The Argentinean Society of Hypertension, in agreement with the May Measurement Month (MMM) initiative of the International Society of Hypertension, implemented for the third consecutive year a hypertension screening campaign. A volunteer cross-sectional survey was carried out in public spaces and health centres during the month of May 2019 across 33 cities in Argentina. Hypertension was defined as systolic blood pressure (BP) ≥140 mmHg and/or diastolic BP ≥90 mmHg based on the mean of the second and third BP measurements, or in those on treatment for high BP. A total of 94 523 individuals (53.9 ± 17.8 years old, 55 231women and 39 292 men), were evaluated. The age and sex standardized mean BP was 124.7/77.2 mmHg. Among participants, 34.7% were overweight (25-29.9 m/kg2) and 28.7% had obesity (≥30 m/kg2). Individuals identified as being overweight had BP 3/2 mmHg higher and individuals with obesity 6/4 mmHg higher than those with normal weight. The prevalence of hypertension was 52.5%. Although 81.1% were aware and 77.7% were on antihypertensive treatment, only 46.0% of all individuals with hypertension had their BP controlled. Moreover, 19.8% of those not on any antihypertensive medication were found with raised BP. The low level of control of hypertension generates the critical need for the development of community-based prevention strategies reinforcing strategies to increase the awareness and control of hypertension.

3.
Arch Biochem Biophys ; 694: 108600, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007282

RESUMO

Physical training stimulates the development of physiologic cardiac hypertrophy (CH), being a key event in this process the inhibition of the Na+/H+ exchanger. However, the role of the sodium bicarbonate cotransporter (NBC) has not been explored yet under this circumstance. C57/Bl6 mice were allowed to voluntary exercise (wheel running) for five weeks. Cardiac mass was evaluated by echocardiography and histomorphometry detecting that training promoted the development of physiological CH (heart weight/tibia length ratio, mg/mm: 6.54 ± 0.20 vs 8.81 ± 0.24; interstitial collagen content, %: 3.14 ± 0.63 vs. 1.57 ± 0.27; and cross-sectional area of cardiomyocytes, µm2: 200.6 ± 8.92 vs. 281.9 ± 24.05; sedentary (Sed) and exercised (Ex) mice, respectively). The activity of the electrogenic isoform of the cardiac NBC (NBCe1) was estimated by recording intracellular pH under high potassium concentration and by measuring action potential duration (APD). NBCe1 activity was significantly increased in isolated cardiomyocytes of trained mice. Additionally, the APD was shorter and the alkalization due to high extracellular potassium-induced depolarization was greater in this group, indicating that the NBCe1 was hyperactive. These results are online with the observed myocardial up-regulation of the NBCe1 (Western Blot, %: 100 ± 13.86 vs. 202 ± 29.98; Sed vs. Ex, n = 6 each group). In addition, we detected a reduction in H2O2 production in the myocardium of trained mice. These results support that voluntary training induces the development of physiologic CH with up-regulation of the cardiac NBCe1 in mice. Furthermore, the improvement in the antioxidant capacity contributes to the beneficial cardiovascular consequences of physical training.


Assuntos
Miocárdio/metabolismo , Condicionamento Físico Animal , Simportadores de Sódio-Bicarbonato/metabolismo , Animais , Cardiomegalia Induzida por Exercícios/fisiologia , Peróxido de Hidrogênio/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Isoformas de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
4.
Eur Heart J Suppl ; 22(Suppl H): H11-H13, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32884457

RESUMO

Hypertension continues to be the leading cause of death and disability in the industrialized world, with a high level of unawareness and unacceptably poor control. Therefore, the Argentinian Society of Hypertension, in agreement with the May Measurement Month (MMM) initiative of the International Society of Hypertension, implemented for the second consecutive year an educational campaign during the month of May 2018. A volunteer cross-sectional survey was carried out in public spaces and health centres during the month of May 2018 across 33 cities in Argentina. Hypertension was defined as systolic blood pressure (BP) ≥140 mmHg or diastolic BP ≥90 mmHg based on the mean of the 2nd and 3rd of three consecutive BP measurements, or in those on treatment for high BP. Statistical analysis including multiple imputation followed the MMM protocol. A total of 70 418 individuals were screened during MMM18, after excluding those under 18 years old. Of the total, 43.8% of participants were classified as hypertensive, 77.7% were aware of their diagnosis, 69.1% were on pharmacological treatment, and 38.7% were controlled. Of those on antihypertensive medication, 56.0% were controlled. It is necessary to reinforce strategies not only to increase the awareness and control of hypertension but also to identify the population groups, in which these strategies would have the greatest impact, helping to reduce the enormous health burden attributed to hypertension.

5.
Hipertens. riesgo vasc ; 37(4): 169-175, 2020.
Artigo em Espanhol | IBECS | ID: ibc-188820

RESUMO

El 31 de diciembre de 2019 se reportó el primer caso de COVID-19 en Wuhan, China, y desde entonces ha habido un interés creciente y sin precedentes por conocer todos los aspectos vinculados con esta nueva enfermedad. Uno de los temas que ha generado debate se vincula con la asociación entre la terapia antihipertensiva con inhibidores del sistema renina-angiotensina-aldosterona (SRAA) y la infección por el virus SARS-CoV-2. Si bien muchas preguntas siguen hoy día sin poder ser respondidas, la intención de este comunicado es informar a los profesionales de la salud acerca del estado actual de conocimiento. Dado que este es un tema en constante evolución, se recomienda su actualización a medida que se presenten nuevas evidencias. A continuación, daremos revisión a los estudios preclínicos y clínicos que relacionan el coronavirus con el SRAA


The first case of COVID-19 was reported on 31 December 2019 in Wuhan, China. Ever since there has been unprecedented and growing interest in learning about all aspects of this new disease. Debate has been generated as tothe association between antihypertensive therapy with renin-angiotensin-aldosterone system (RAAS) inhibitors and SARS-CoV-2 infection. While many questions as yet remain unanswered, the aim of this report is to inform healthprofessionals about the current state of knowledge. Because this is an ever-evolvingtopic, the recommendation is that it be updated as new evidence becomes available. Below, we provide a review of pre-clinical and clinical studies that link coronavirus to the RAAS


Assuntos
Humanos , Sistema Renina-Angiotensina/efeitos dos fármacos , Infecções por Coronavirus/complicações , Pneumonia Viral/complicações , Índice de Gravidade de Doença , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Infecções por Coronavirus/terapia , Hipertensão/tratamento farmacológico , Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Betacoronavirus , Vasoconstrição/efeitos dos fármacos , Inibidores de Serina Proteinase/metabolismo , Proteína S , Testes de Hipótese
6.
Cell Physiol Biochem ; 52(2): 172-185, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30816666

RESUMO

BACKGROUND/AIMS: Myocardial stretch increases cardiac force in two consecutive phases: The first one due to Frank-Starling mechanism, followed by the gradually developed slow force response (SFR). The latter is the mechanical counterpart of an autocrine/paracrine mechanism involving the release of angiotensin II (Ang II) and endothelin (ET) leading to Na⁺/H⁺ exchanger 1 (NHE-1) phosphorylation and activation. Since previous evidence indicates that p38-MAP kinase (p38-MAPK) negatively regulates the Ang II-induced NHE1 activation in vascular smooth muscle and the positive inotropic effect of ET in the heart, we hypothesized that this kinase might modulate the magnitude of the SFR to stretch. METHODS: Experiments were performed in isolated rat papillary muscles subjected to sudden stretch from 92 to 98% of its maximal length, in the absence or presence of the p38-MAPK inhibitor SB202190, or its inactive analogous SB202474. Western blot technique was used to determine phosphorylation level of p38-MAPK, ERK1/2, p90RSK and NHE-1 (previously immunoprecipitated with NHE-1 polyclonal antibody). Dual specificity phosphatase 6 (DUSP6) expression was evaluated by RT-PCR and western blot. Additionally, the Na⁺-dependent intracellular pH recovery from an ammonium prepulse-induced acid load was used to asses NHE-1 activity. RESULTS: The SFR was larger under p38-MAPK inhibition (SB202190), effect that was not observed in the presence of an inactive analogous (SB202474). Myocardial stretch activated p38-MAPK, while pre-treatment with SB202190 precluded this effect. Inhibition of p38-MAPK increased stretched-induced NHE-1 phosphorylation and activity, key event in the SFR development. Consistently, p38-MAPK inhibition promoted a greater increase in ERK1/2-p90RSK phosphorylation/activation after myocardial stretch, effect that may certainly be responsible for the observed increase in NHE-1 phosphorylation under this condition. Myocardial stretch induced up-regulation of the DUSP6, which specifically dephosphorylates ERK1/2, effect that was blunted by SB202190. CONCLUSION: Taken together, our data support the notion that p38-MAPK activation after myocardial stretch restricts the SFR by limiting ERK1/2-p90RSK phosphorylation, and consequently NHE-1 phosphorylation/activity, through a mechanism that involves DUSP6 up-regulation.


Assuntos
Fosfatase 6 de Especificidade Dupla/biossíntese , Regulação Enzimológica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Contração Miocárdica , Miocárdio/enzimologia , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Imidazóis/farmacologia , Fosforilação/efeitos dos fármacos , Piridinas/farmacologia , Ratos , Ratos Wistar , Trocador 1 de Sódio-Hidrogênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
7.
Exp Mol Pathol ; 107: 1-9, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30664842

RESUMO

Chronic activation of the renin angiotensin system (RAS) favors several cardiac diseases, among which myocardial hypertrophy occupies an outstanding place. In this context, the hyperactivity of the cardiac Na+/H+ (NHE-1) exchanger plays a key role. The pathologic remodeling of the myocardium constitutes an independent risk factor for morbidity and mortality with continuously increasing healthcare cost. Therefore, the development of better therapeutic strategies emerges as highly mandatory. Our goal was to prevent angiotensin II (ANGII)-induced cardiac hypertrophy by NHE-1 gene silencing in Wistar rats. The intramyocardial injection of a lentivirus coding a specific small interference RNA (l-shNHE1) significantly reduced NHE-1 expression exclusively in the heart (~ 50%) and prevented cardiac remodeling in rats exposed to chronic infusion of ANG II (heart weigh/tibia length: 24,03 ±â€¯0,7915 mg/mm vs 28,45 ±â€¯0,9779 mg/mm and collagen volume fraction 2526 ±â€¯0,5003 vs 5982 ±â€¯1043 in l-shNHE1 + ANGII and ANGII, respectively). Interestingly, this was accompanied by an improvement in cardiac function determined by echocardiography even though blood pressure remained elevated (Fractional shortening 0,5960 ±â€¯0,4228 vs -0,9567 ±â€¯0,06888 and blood pressure at the end of ANGII treatment 141,2 ±â€¯6117 mmHg vs 134,1 ±â€¯6723 mmHg; in l-shNHE1 + ANGII and ANGII, respectively). ANGII infusion increased myocardial NADPH oxidase activity but the l-shNHE1 injection prevented oxidative stress as revealed by the normalization of lipid peroxidation (T-BARS 12,40 ±â€¯2887.vs 23,05 ±â€¯1537 in l-shNHE1 + ANGII and ANGII, respectively). These results allow as to propose the partial silencing of the cardiac NHE-1 through lentiviral injection as a promising tool in the prevention of ANGII-induced cardiac hypertrophy.


Assuntos
Angiotensina II/metabolismo , Técnicas de Silenciamento de Genes/métodos , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores , Remodelação Ventricular/fisiologia , Animais , Cardiomegalia/metabolismo , Masculino , Ratos , Ratos Wistar
8.
J Mol Cell Cardiol ; 112: 16-26, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28867536

RESUMO

Cardiac adaptation to endurance training includes improved contractility by a non-yet clarified mechanism. Since IGF-1 is the main mediator of the physiological response to exercise, we explored its effect on cardiac contractility and the putative involvement of nitric oxide (NO) and CaMKII in control and swim-trained mice. IGF-1 increased cardiomyocyte shortening (128.1±4.6% vs. basal; p˂0.05) and accelerated relaxation (time to 50% relengthening: 49.2±2.0% vs. basal; p˂0.05), effects abrogated by inhibition of: AKT with MK-2206, NO production with the NO synthase (NOS) inhibitor L-NAME and the specific NOS1 inhibitor nitroguanidine (NG), and CaMKII with KN-93. In agreement, an increase in NO in response to IGF-1 (133.8±2.2%) was detected and prevented by both L-NAME and NG but not KN-93, suggesting that CaMKII activation was downstream NO. In addition, we determined CaMKII activity (P-CaMKII) and phosphorylation of its target, Thr17-PLN. IGF-1, by a NO-dependent mechanism, significantly increased both (227.2±29.4% and 145.3±5.4%, respectively) while no changes in the CaMKII phosphorylation site of ryanodine receptor were evident. The improvement in contractility induced by IGF-1 was associated with increased Ca2+ transient amplitude, rate of decay and SR content. Interestingly, this response was absent in cardiomyocytes from transgenic mice that express a CaMKII inhibitory peptide (AC3-I strain). Moreover, AC3-I mice subjected to swim training did develop physiological cardiac hypertrophy but not the contractile adaptation. Therefore, we conclude that NO-dependent CaMKII activation plays a critical role in the improvement in contractility induced by IGF-1 and exercise training. Interestingly, this pathway would not contribute to the adaptive hypertrophy.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Contração Miocárdica , Óxido Nítrico/metabolismo , Natação/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Cardiomegalia/enzimologia , Cardiomegalia/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Modelos Biológicos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Condicionamento Físico Animal , Proteínas Proto-Oncogênicas c-akt/metabolismo , Retículo Sarcoplasmático/metabolismo
9.
J Appl Physiol (1985) ; 118(9): 1154-60, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25749446

RESUMO

We examined the effect of specific and local silencing of sodium/hydrogen exchanger isoform 1 (NHE1) with a small hairpin RNA delivered by lentivirus (L-shNHE1) in the cardiac left ventricle (LV) wall of spontaneously hypertensive rats, to reduce cardiac hypertrophy. Thirty days after the lentivirus was injected, NHE1 protein expression was reduced 53.3 ± 3% in the LV of the L-shNHE1 compared with the control group injected with L-shSCR (NHE1 scrambled sequence), without affecting its expression in other organs, such as liver and lung. Hypertrophic parameters as LV weight-to-body weight and LV weight-to-tibia length ratio were significantly reduced in animals injected with L-shNHE1 (2.32 ± 0.5 and 19.30 ± 0.42 mg/mm, respectively) compared with L-shSCR-injected rats (2.68 ± 0.06 and 21.53 ± 0.64 mg/mm, respectively). Histochemical analysis demonstrated a reduction of cardiomyocytes cross-sectional area in animals treated with L-shNHE1 compared with L-shSCR (309,81 ± 20,86 vs. 424,52 ± 21 µm(2), P < 0.05). Echocardiography at the beginning and at the end of the treatment showed that shNHE1 expression for 30 days induced 9% reduction of LV mass. Also, animals treated with L-shNHE1 exhibited a reduced LV wall thickness without changing LV diastolic dimension and arterial pressure, indicating an increased parietal stress. In addition, midwall shortening was not modified, despite the increased wall tension, suggesting an improvement of cardiac function. Chronic shNHE1 expression in the heart emerges as a possible methodology to reduce pathological cardiac hypertrophy, avoiding potentially undesired effects caused from a body-wide inhibition of NHE1.


Assuntos
Cardiomegalia/genética , Cardiomegalia/patologia , Inativação Gênica/fisiologia , Miocárdio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Animais , Pressão Arterial/genética , Pressão Arterial/fisiologia , Linhagem Celular , Diástole/genética , Diástole/fisiologia , Ecocardiografia/métodos , Células HEK293 , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Masculino , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , RNA Interferente Pequeno/genética , Ratos , Ratos Endogâmicos SHR/genética , Ratos Endogâmicos SHR/fisiologia , Trocador 1 de Sódio-Hidrogênio
10.
Cardiovasc Pathol ; 24(4): 236-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25670255

RESUMO

BACKGROUND: Reactive oxygen species, such as superoxide, are being increasingly recognized as key components of a vast array of signaling pathways. Angiotensin II is a well-recognized stimulus for superoxide production through NADPH oxidase activation and opening of the mitochondrial ATP-sensitive potassium channels (mKATP). A role for this mechanism has been proposed to explain several physiological effects of the peptide. The aim of this study was to evaluate the involvement of this mechanism in the inotropic response to 100nmol/L angiotensin II. METHODS: Sarcomere shortening and intracellular pH (BCECF-epifluorescence technique) were evaluated in isolated cat ventricular myocytes placed in a perfusion chamber on the stage of an inverted microscope. Myocardial superoxide production was evaluated by the lucigenin quimioluminiscence method. RESULTS: Angiotensin II (100nmol/L) increased~70% sarcomere shortening, effect that was only partially prevented by NADPH oxidase inhibition, mKATP channel blockade or inhibition of the cardiac Na(+)/H(+) exchanger (NHE-1). Moreover, angiotensin II stimulates NHE-1 activity by a NADPH oxidase-dependent mechanism. Myocardial superoxide production was also increased by angiotensin II, and this action was completely prevented either by NADPH oxidase inhibition or mKATP channel blockade. CONCLUSIONS: The positive inotropic response to 100nmol/L angiotensin II is due to both ROS/NHE-1 dependent and independent pathways, this being a point of divergence with the signaling previously described to be triggered by lower concentrations of angiotensin II (i.e.: 1nmol/L).


Assuntos
Angiotensina II/farmacologia , Cardiotônicos/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Superóxidos/metabolismo , Animais , Gatos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Ventrículos do Coração/metabolismo , Concentração de Íons de Hidrogênio , Miócitos Cardíacos/metabolismo , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Sarcômeros/efeitos dos fármacos , Sarcômeros/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Trocadores de Sódio-Hidrogênio/metabolismo
11.
J Mol Cell Cardiol ; 76: 186-95, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25240639

RESUMO

BACKGROUND: The involvement of NHE-1 hyperactivity, critical for pathological cardiac hypertrophy (CH), in physiological CH has not been elucidated yet. Stimulation of NHE-1 increases intracellular Na(+) and Ca(2+) favouring calcineurin activation. Since myocardial stretch, an activator of NHE-1, is common to both types of CH, we speculate that NHE-1 hyperactivity may also happen in physiological CH. However, calcineurin activation is characteristic only for pathological hypertrophy. We hypothesize that an inhibitory AKT-dependent mechanism prevents NHE-1 hyperactivity in the setup of physiological CH. METHODS: Physiological CH was induced in rats by swimming (90 min/day, 12 weeks) or in cultured isolated cardiomyocytes with IGF-1 (10 nmol/L). RESULTS: Training induced eccentric CH development (left ventricular weight/tibial length: 22.0±0.3 vs. 24.3±0.7 mg/mm; myocyte cross sectional area: 100±3.2 vs. 117±4.1 %; sedentary (Sed) and swim-trained (Swim) respectively; p<0.05] with decreased myocardial stiffness and collagen deposition [1.7±0.05 % (Sed) vs. 1.4±0.09 % (Swim); p<0.05]. Increased phosphorylation of AKT, ERK1/2, p90(RSK) and NHE-1 at the consensus site for ERK1/2-p90(RSK) were detected in the hypertrophied hearts (P-AKT: 134±10 vs. 100±5; P-ERK1/2: 164±17 vs. 100±18; P-p90(RSK): 160±18 vs. 100±9; P-NHE-1 134±10 vs. 100±10; % in Swim vs. Sed respectively; p<0.05). No significant changes were detected neither in calcineurin activation [calcineurin Aß 100±10 (Sed) vs. 96±12 (Swim)], nor NFAT nuclear translocation [100±3.11 (Sed) vs. 95±9.81 % (Swim)] nor NHE-1 expression [100±8.5 (Sed) vs. 95±6.7 % (Swim)]. Interestingly, the inhibitory phosphorylation of the NHE-1 consensus site for AKT was increased in the hypertrophied myocardium (151.6±19.4 (Swim) vs. 100±9.5 % (Sed); p<0.05). In isolated cardiomyocytes 24 hours IGF-1 increased cell area (114±1.3 %; p<0.05) and protein/DNA content (115±3.9 %, p<0.05), effects not abolished by NHE-1 inhibition with cariporide (114±3 and 117±4.4 %, respectively). IGF-1 significantly decreased NHE-1 activity during pHi recovery from sustained intracellular acidosis (JH+ at pHi 6.8: 4.08±0.74 and 9.09±1.21 mmol/L/min, IGF-1 vs. control; p<0.05), and abolished myocardial slow force response, the mechanical counterpart of stretch-induced NHE-1 activation. CONCLUSIONS: NHE-1 hyperactivity seems not to be involved in physiological CH development, contrary to what characterizes pathological CH. We propose that AKT, through an inhibitory phosphorylation of the NHE-1, prevents its stretch-induced activation. This posttranslational modification emerges as an adaptive mechanism that avoids NHE-1 hyperactivity preserving its housekeeping functioning.


Assuntos
Coração/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Tamanho Celular , Células Cultivadas , Fator de Crescimento Insulin-Like I/fisiologia , Masculino , Mecanotransdução Celular , Miócitos Cardíacos/metabolismo , Ratos Wistar , Natação
12.
Pflugers Arch ; 466(9): 1819-30, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24327206

RESUMO

Emerging evidence supports a key role for endothelin-1 (ET-1) and the transactivation of the epidermal growth factor receptor (EGFR) in angiotensin II (Ang II) action. We aim to determine the potential role played by endogenous ET-1, EGFR transactivation and redox-dependent sodium hydrogen exchanger-1 (NHE-1) activation in the hypertrophic response to Ang II of cardiac myocytes. Electrically paced adult cat cardiomyocytes were placed in culture and stimulated with 1 nmol l(-1) Ang II or 5 nmol l(-1) ET-1. Ang II increased ~45 % cell surface area (CSA) and ~37 % [(3)H]-phenylalanine incorporation, effects that were blocked not only by losartan (Los) but also by BQ123 (AT1 and ETA receptor antagonists, respectively). Moreover, Ang II significantly increased ET-1 messenger RNA (mRNA) expression. ET-1 similarly increased myocyte CSA and protein synthesis, actions prevented by the reactive oxygen species scavenger MPG or the NHE-1 inhibitor cariporide (carip). ET-1 increased the phosphorylation of the redox-sensitive ERK1/2-p90(RSK) kinases, main activators of the NHE-1. This effect was prevented by MPG and the antagonist of EGFR, AG1478. Ang II, ET-1 and EGF increased myocardial superoxide production (187 ± 9 %, 149 ± 8 % and 163.7 ± 6 % of control, respectively) and AG1478 inhibited these effects. Interestingly, Los inhibited only Ang II whilst BQ123 cancelled both Ang II and ET-1 actions, supporting the sequential and unidirectional activation of AT1, ETA and EGFR. Based on the present evidence, we propose that endogenous ET-1 mediates the hypertrophic response to Ang II by a mechanism that involves EGFR transactivation and redox-dependent activation of the ERK1/2-p90(RSK) and NHE-1 in adult cardiomyocytes.


Assuntos
Angiotensina II/metabolismo , Cardiomegalia/metabolismo , Endotelina-1/metabolismo , Receptores ErbB/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Western Blotting , Gatos , Modelos Animais de Doenças , Estimulação Elétrica , Hipertrofia/metabolismo , Miócitos Cardíacos/patologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Ativação Transcricional
13.
Hypertension ; 63(1): 112-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24126173

RESUMO

Myocardial stretch triggers an angiotensin II-dependent autocrine/paracrine loop of intracellular signals, leading to reactive oxygen species-mediated activation of redox-sensitive kinases. Based on pharmacological strategies, we previously proposed that mineralocorticoid receptor (MR) is necessary for this stretch-triggered mechanism. Now, we aimed to test the role of MR after stretch by using a molecular approach to avoid secondary effects of pharmacological MR blockers. Small hairpin interference RNA capable of specifically knocking down the MR was incorporated into a lentiviral vector (l-shMR) and injected into the left ventricular wall of Wistar rats. The same vector but expressing a nonsilencing sequence (scramble) was used as control. Lentivirus propagation through the left ventricle was evidenced by confocal microscopy. Myocardial MR expression, stretch-triggered activation of redox-sensitive kinases (ERK1/2-p90(RSK)), the consequent Na(+)/H(+) exchanger-mediated changes in pHi (HEPES-buffer), and its mechanical counterpart, the slow force response, were evaluated. Furthermore, reactive oxygen species production in response to a low concentration of angiotensin II (1.0 nmol/L) or an equipotent concentration of epidermal growth factor (0.1 µg/mL) was compared in myocardial tissue slices from both groups. Compared with scramble, animals transduced with l-shMR showed (1) reduced cardiac MR expression, (2) cancellation of angiotensin II-induced reactive oxygen species production but preservation of epidermal growth factor-induced reactive oxygen species production, (3) cancellation of stretch-triggered increase in ERK1/2-p90(RSK) phosphorylation, (4) lack of stretch-induced Na(+)/H(+) exchanger activation, and (5) abolishment of the slow force response. Our results provide strong evidence that MR activation occurs after myocardial stretch and is a key factor to promote redox-sensitive kinase activation and their downstream consequences.


Assuntos
Miocárdio/metabolismo , Receptores de Mineralocorticoides/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Vetores Genéticos , Coração/fisiologia , Lentivirus , Masculino , Mitocôndrias/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Trocador 1 de Sódio-Hidrogênio
14.
Curr Cardiol Rev ; 9(3): 230-40, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23909633

RESUMO

The stretch of cardiac muscle increases developed force in two phases. The first phase, which occurs rapidly, constitutes the well-known Frank-Starling mechanism and it is generally attributed to enhanced myofilament responsiveness to Ca(2+). The second phase or slow force response (SFR) occurs gradually and is due to an increase in the calcium transient amplitude as a result of a stretch-triggered autocrine/paracrine mechanism. We previously showed that Ca(2+) entry through reverse Na(+)/Ca(2+) exchange underlies the SFR, as the final step of an autocrine/paracrine cascade involving release of angiotensin II/endothelin, and a Na(+)/H(+) exchanger (NHE-1) activation-mediated rise in Na+. In the present review we mainly focus on our three latest contributions to the understanding of this signalling pathway triggered by myocardial stretch: 1) The finding that an increased production of reactive oxygen species (ROS) from mitochondrial origin is critical in the activation of the NHE-1 and therefore in the genesis of the SFR; 2) the demonstration of a key role played by the transactivation of the epidermal growth factor receptor; and 3) the involvement of mineralocorticoid receptors (MR) activation in the stretch-triggered cascade leading to the SFR. Among these novel contributions, the critical role played by the MR is perhaps the most important one. This finding may conceivably provide a mechanistic explanation to the recently discovered strikingly beneficial effects of MR antagonism in humans with cardiac hypertrophy and failure.


Assuntos
Comunicação Autócrina/fisiologia , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Comunicação Parácrina/fisiologia , Receptores de Mineralocorticoides/metabolismo , Angiotensina II/metabolismo , Angiotensina II/fisiologia , Cálcio/metabolismo , Cardiomegalia/metabolismo , Doenças Cardiovasculares/fisiopatologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/prevenção & controle , Humanos , Espécies Reativas de Oxigênio/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Hormônios Tireóideos/metabolismo
15.
Am J Physiol Heart Circ Physiol ; 304(2): H175-82, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23161880

RESUMO

Myocardial stretch elicits a rapid increase in developed force, which is mainly caused by an increase in myofilament calcium sensitivity (Frank-Starling mechanism). Over the ensuing 10-15 min, a second gradual increase in force takes place. This slow force response to stretch is known to be the result of an increase in the calcium transient amplitude and constitutes the in vitro equivalent of the Anrep effect described 100 years ago in the intact heart. In the present review, we will update and discuss what is known about the Anrep effect as the mechanical counterpart of autocrine/paracrine mechanisms involved in its genesis. The chain of events triggered by myocardial stretch comprises 1) release of angiotensin II, 2) release of endothelin, 3) activation of the mineralocorticoid receptor, 4) transactivation of the epidermal growth factor receptor, 5) increased formation of mitochondria reactive oxygen species, 6) activation of redox-sensitive kinases upstream myocardial Na(+)/H(+) exchanger (NHE1), 7) NHE1 activation, 8) increase in intracellular Na(+) concentration, and 9) increase in Ca(2+) transient amplitude through the Na(+)/Ca(2+) exchanger. We will present the experimental evidence supporting each of the signaling steps leading to the Anrep effect and its blunting by silencing NHE1 expression with a specific small hairpin interference RNA injected into the ventricular wall.


Assuntos
Acoplamento Excitação-Contração , Mecanorreceptores/metabolismo , Mecanotransdução Celular , Modelos Cardiovasculares , Força Muscular , Contração Miocárdica , Miocárdio/metabolismo , Reflexo de Estiramento , Animais , Comunicação Autócrina , Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Comunicação Parácrina , Interferência de RNA , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo
18.
Can J Cardiol ; 28(4): 464-70, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22296804

RESUMO

BACKGROUND: Blood pressure (BP) is higher in men than in women at similar ages through adult life. Interestingly, a similar pattern is detected in left ventricular mass (LVM), classically attributed to differences in body size. However, the existing difference in BP between sexes might be relevant in determining LVM and it has been not fully investigated. Therefore, we set out to determine the impact of nonhypertensive levels of BP on the sex-associated LVM difference. METHODS: We conducted population-based study including 283 young students (52% male; age 20.62 ± 1.31 years). BP was determined twice using standard mercury sphygmomanometers in 2 occasions. LVM was determined with M-mode echocardiography. To dissect the relative contribution of BP, volume load, and body size to the sex-related difference in LVM, an analysis of covariance was performed. RESULTS: Mean systolic and diastolic BP were 10.00 ± 0.96 and 4.59 ± 0.78 mm Hg higher and LVM was 34.87 ± 3.12 g larger in men than in women, respectively (P < 0.01, t test). When LVM was adjusted to mean BP, the sex difference was reduced by 16%. When LVM was adjusted to body size and hemodynamic load, this difference was reduced by 68.5%. CONCLUSIONS: We report in a sample of young nonhypertensive students a difference in LVM between women and men that is partially explained (16%) by sex differences in BP, supporting an early effect of BP on cardiac mass even in the absence of hypertension. A more relevant effect could be expected as the population ages.


Assuntos
Pressão Sanguínea/fisiologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Caracteres Sexuais , Tamanho Corporal , Estudos Transversais , Ecocardiografia , Exercício Físico/fisiologia , Feminino , Humanos , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Masculino , Obesidade/fisiopatologia , Tamanho do Órgão/fisiologia , Sobrepeso/fisiopatologia , Valores de Referência , Adulto Jovem
19.
J Physiol ; 589(Pt 24): 6051-61, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22174146

RESUMO

The increase in myocardial reactive oxygen species after epidermal growth factor receptor transactivation is a crucial step in the autocrine/paracrine angiotensin II/endothelin receptor activation leading to the slow force response to stretch (SFR). Since experimental evidence suggests a link between angiotensin II or its AT1 receptor and the mineralocorticoid receptor (MR), and MR transactivates the epidermal growth factor receptor, we thought to determine whether MR activation participates in the SFR development in rat myocardium. We show here that MR activation is necessary to promote reactive oxygen species formation by a physiological concentration of angiotensin II (1 nmol l(-1)), since an increase in superoxide anion formation of ~50% of basal was suppressed by blocking MR with spironolactone or eplerenone. This effect was also suppressed by blocking AT1, endothelin (type A) or epidermal growth factor receptors, by inhibiting NADPH oxydase or by targeting mitochondria, and was unaffected by glucocorticoid receptor inhibition. All interventions except AT1 receptor blockade blunted the increase in superoxide anion promoted by an equipotent dose of endothelin-1 (1 nmol l(-1)) confirming that endothelin receptors activation is downstream of AT1. Similarly, an increase in superoxide anion promoted by an equipotent dose of aldosterone (10 nmol l(-1)) was blocked by spironolactone or eplerenone, by preventing epidermal growth factor receptor transactivation, but not by inhibiting glucocorticoid receptors or protein synthesis, suggesting non-genomic MR effects. Combination of aldosterone plus endothelin-1 did not increase superoxide anion formation more than each agonist separately. We found that aldosterone increased phosphorylation of the redox-sensitive kinases ERK1/2-p90RSK and the NHE-1, effects that were eliminated by eplerenone or by preventing epidermal growth factor receptor transactivation. Finally, we provide evidence that the SFR is suppressed by MR blockade, by preventing epidermal growth factor receptor transactivation or by scavenging reactive oxygen species, but it is unaffected by glucocorticoid receptor blockade or protein synthesis inhibition. Our results suggest that MR activation is a necessary step in the stretch-triggered reactive oxygen species-mediated activation of redox-sensitive kinases upstream NHE-1.


Assuntos
Coração/fisiologia , Músculo Liso/fisiologia , Contração Miocárdica/fisiologia , Receptores de Mineralocorticoides/fisiologia , Aldosterona/farmacologia , Angiotensina II/metabolismo , Animais , Endotelina-1/farmacologia , Receptores ErbB/metabolismo , Técnicas In Vitro , Masculino , Mitocôndrias Cardíacas/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculos Papilares/fisiologia , Ratos , Ratos Wistar , Receptores de Endotelina/metabolismo , Receptores de Mineralocorticoides/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Trocadores de Sódio-Hidrogênio/metabolismo , Estresse Mecânico , Superóxidos/metabolismo
20.
Hypertension ; 58(5): 912-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22016493

RESUMO

The use of antagonists of the mineralocorticoid receptor in the treatment of myocardial hypertrophy and heart failure has gained increasing importance in the last years. The cardiac Na(+)/H(+) exchanger (NHE-1) upregulation induced by aldosterone could account for the genesis of these pathologies. We tested whether aldosterone-induced NHE-1 stimulation involves the transactivation of the epidermal growth factor receptor (EGFR). Rat ventricular myocytes were used to measure intracellular pH with epifluorescence. Aldosterone enhanced the NHE-1 activity. This effect was canceled by spironolactone or eplerenone (mineralocorticoid receptor antagonists), but not by mifepristone (glucocorticoid receptor antagonist) or cycloheximide (protein synthesis inhibitor), indicating that the mechanism is mediated by the mineralocorticoid receptor triggering nongenomic pathways. Aldosterone-induced NHE-1 stimulation was abolished by the EGFR kinase inhibitor AG1478, suggesting that is mediated by transactivation of EGFR. The increase in the phosphorylation level of the kinase p90(RSK) and NHE-1 serine703 induced by aldosterone was also blocked by AG1478. Exogenous epidermal growth factor mimicked the effects of aldosterone on NHE-1 activity. Epidermal growth factor was also able to increase reactive oxygen species production, and the epidermal growth factor-induced activation of the NHE-1 was abrogated by the reactive oxygen species scavenger N-2-mercaptopropionyl glycine, indicating that reactive oxygen species are participating as signaling molecules in this mechanism. Aldosterone enhances the NHE-1 activity via transactivation of the EGFR, formation of reactive oxygen species, and phosphorylation of the exchanger. These results call attention to the consideration of the EGFR as a new potential therapeutic target of the cardiovascular pathologies involving the participation of aldosterone.


Assuntos
Aldosterona/farmacologia , Receptores ErbB/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/efeitos dos fármacos , Animais , Células Cultivadas , Receptores ErbB/genética , Modelos Animais , Miócitos Cardíacos/metabolismo , Fosforilação/fisiologia , Distribuição Aleatória , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Sensibilidade e Especificidade , Transdução de Sinais/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/metabolismo , Superóxidos/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...