Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Protein Sci ; 33(6): e5016, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747381

RESUMO

RAF kinases are key components of the RAS-MAPK signaling pathway, which drives cell growth and is frequently overactivated in cancer. Upstream signaling activates the small GTPase RAS, which recruits RAF to the cell membrane, driving a transition of the latter from an auto-inhibited monomeric conformation to an active dimer. Despite recent progress, mechanistic details underlying RAF activation remain unclear, particularly the role of RAS and the membrane in mediating this conformational rearrangement of RAF together with 14-3-3 to permit RAF kinase domain dimerization. Here, we reconstituted an active complex of dimeric BRAF, a 14-3-3 dimer and two KRAS4B on a nanodisc bilayer and verified that its assembly is GTP-dependent. Biolayer interferometry (BLI) was used to compare the binding affinities of monomeric versus dimeric full-length BRAF:14-3-3 complexes for KRAS4B-conjugated nanodiscs (RAS-ND) and to investigate the effects of membrane lipid composition and spatial density of KRAS4B on binding. 1,2-Dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) and higher KRAS4B density enhanced the interaction of BRAF:14-3-3 with RAS-ND to different degrees depending on BRAF oligomeric state. We utilized our reconstituted system to dissect the effects of KRAS4B and the membrane on the kinase activity of monomeric and dimeric BRAF:14-3-3 complexes, finding that KRAS4B or nanodiscs alone were insufficient to stimulate activity, whereas RAS-ND increased activity of both states of BRAF. The reconstituted assembly of full-length BRAF with 14-3-3 and KRAS on a cell-free, defined lipid bilayer offers a more holistic biophysical perspective to probe regulation of this multimeric signaling complex at the membrane surface.


Assuntos
Proteínas 14-3-3 , Nanoestruturas , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas p21(ras) , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Humanos , Nanoestruturas/química , Multimerização Proteica , Ligação Proteica , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo
2.
PLOS Digit Health ; 3(1): e0000433, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38261580

RESUMO

The remarkable performance of ChatGPT, launched in November 2022, has significantly impacted the field of natural language processing, inspiring the application of large language models as supportive tools in clinical practice and research worldwide. Although GPT-3.5 recently scored high on the United States Medical Licensing Examination, its performance on medical licensing examinations of other nations, especially non-English speaking nations, has not been sufficiently evaluated. This study assessed GPT's performance on the National Medical Licensing Examination (NMLE) in Japan and compared it with the actual minimal passing rate for this exam. In particular, the performances of both the GPT-3.5 and GPT-4 models were considered for the comparative analysis. We initially used the GPT models and several prompts for 290 questions without image data from the 116th NMLE (held in February 2022 in Japan) to maximize the performance for delivering correct answers and explanations of the questions. Thereafter, we tested the performance of the best GPT model (GPT-4) with optimized prompts on a dataset of 262 questions without images from the latest 117th NMLE (held in February 2023). The best model with the optimized prompts scored 82.7% for the essential questions and 77.2% for the basic and clinical questions, both of which sufficed the minimum passing scoring rates of 80.0% and 74.6%, respectively. After an exploratory analysis of 56 incorrect answers from the model, we identified the three major factors contributing to the generation of the incorrect answers-insufficient medical knowledge, information on Japan-specific medical system and guidelines, and mathematical errors. In conclusion, GPT-4 with our optimized prompts achieved a minimum passing scoring rate in the latest 117th NMLE in Japan. Beyond its original design of answering examination questions for humans, these artificial intelligence (AI) models can serve as one of the best "sidekicks" for solving problems and addressing the unmet needs in the medical and healthcare fields.

3.
Asia Pac Allergy ; 13(3): 114-120, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37744957

RESUMO

Background: The coronavirus disease 2019 (COVID-19) pandemic impacted various parts of society, including Japanese children with allergies. Objective: This study investigated risk factors for pediatric allergic diseases associated with the state of emergency owing to the COVID-19 pandemic in Japan, including during school closures. Methods: Parents of pediatric patients (0-15 years) with allergies were enrolled and queried regarding the impact of school closure on pediatric allergies compared to that before the COVID-19 pandemic. Results: A valid response was obtained from 2302 parents; 1740 of them had children with food allergies. Approximately 4% (62/1740) of the parents reported accidental food allergen ingestion was increased compared to that before the COVID-19 pandemic. Accidental ingestion during school closures was associated with increased contact with meals containing allergens meant for siblings or other members of the family at home. The exacerbation rate during the pandemic was highest for atopic dermatitis at 13% (127/976), followed by allergic rhinitis at 8% (58/697), and bronchial asthma at 4% (27/757). The main risk factors for worsening atopic dermatitis, allergic rhinitis, and bronchial asthma were contact dermatitis of the mask area (34/120 total comments); home allergens, such as mites, dogs, and cats (15/51 total comments); and seasonal changes (6/25 total comments), respectively. Conclusion: The main factors affecting allergic diseases were likely related to increased time at home, preventive measures against COVID-19, and refraining from doctor visits. Children with allergies were affected by changes in social conditions; however, some factors, such as preventing accidental ingestion and the management of allergens at home, were similar to those before the COVID-19 pandemic. Patients who had received instructions on allergen avoidance at home before the pandemic were able to manage their disease better even when their social conditions changed.

4.
Protein Expr Purif ; 212: 106361, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37652393

RESUMO

DiRAS3, also called ARHI, is a RAS (sub)family small GTPase protein that shares 50-60% sequence identity with H-, K-, and N-RAS, with substitutions in key conserved G-box motifs and a unique 34 amino acid extension at its N-terminus. Unlike the RAS proto-oncogenes, DiRAS3 exhibits tumor suppressor properties. DiRAS3 function has been studied through genetics and cell biology, but there has been a lack of understanding of the biochemical and biophysical properties of the protein, likely due to its instability and poor solubility. To overcome this solubility issue, we engineered a DiRAS3 variant (C75S/C80S), which significantly improved soluble protein expression in E. coli. Recombinant DiRAS3 was purified by Ni-NTA and size exclusion chromatography (SEC). Concentration dependence of the SEC chromatogram indicated that DiRAS3 exists in monomer-dimer equilibrium. We then produced truncations of the N-terminal (ΔN) and both (ΔNC) extensions to the GTPase domain. Unlike full-length DiRAS3, the SEC profiles showed that ΔNC is monomeric while ΔN was monomeric with aggregation, suggesting that the N and/or C-terminal tail(s) contribute to dimerization and aggregation. The 1H-15N HSQC NMR spectrum of ΔNC construct displayed well-dispersed peaks similar to spectra of other GTPase domains, which enabled us to demonstrate that DiRAS3 has a GTPase domain that can bind GDP and GTP. Taken together, we conclude that, despite the substitutions in the G-box motifs, DiRAS3 can switch between nucleotide-bound states and that the N- and C-terminal extensions interact transiently with the GTPase domain in intra- and inter-molecular fashions, mediating weak multimerization of this unique small GTPase.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Proteínas ras , Escherichia coli/genética , Aminoácidos , Biofísica
5.
Nutrients ; 15(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375671

RESUMO

To increase the prediction accuracy of positive oral food challenge (OFC) outcomes during stepwise slow oral immunotherapy (SS-OIT) in children with a hen's egg (HE) allergy, we evaluated the predictive value of the combination of antigen-specific IgE (sIgE) with antigen binding avidity and sIgG4 values. Sixty-three children with HE allergy undergoing SS-OIT were subjected to repeated OFCs with HE. We measured the ovomucoid (OVM)-sIgE by ImmunoCAP or densely carboxylated protein (DCP) microarray, sIgG4 by DCP microarray, and the binding avidity of OVM-sIgE defined as the level of 1/IC50 (nM) measured by competitive binding inhibition assays. The OFC was positive in 37 (59%) patients undergoing SS-OIT. Significant differences in DCP-OVM-sIgE, CAP-OVM-sIgE, I/IC50, DCP-OVM-sIgG4, the multiplication products of DCP-OVM-sIgE, and the binding avidity of DCP-OVM-sIgE (DCP-OVM-sIgE/IC50) and DCP-OVM-sIgE/sIgG4 were compared between the negative and positive groups (p < 0.01). Among them, the variable with the greatest area under the receiver operating characteristic curve was DCP-OVM-sIgE/IC50 (0.84), followed by DCP-OVM-sIgE/sIgG4 (0.81). DCP-OVM-sIgE/IC50 and DCP-OVM-sIgE/sIgG4 are potentially useful markers for the prediction of positive OFCs during HE-SS-OIT and may allow proper evaluation of the current allergic status in the healing process during HE-SS-OIT.


Assuntos
Hipersensibilidade a Ovo , Feminino , Animais , Hipersensibilidade a Ovo/terapia , Ovomucina , Imunoglobulina G , Galinhas , Imunoglobulina E , Alérgenos
6.
Sci Total Environ ; 831: 154670, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35314234

RESUMO

Large amounts of radiocesium were released into marine environments following the Fukushima Daiichi Nuclear Power Plant accident in March 2011. Released radiocesium influenced not only marine environment but also marine biota in Fukushima. Since marine biota as fisheries products is important for Japanese market, it is important to assess the distribution of radiocesium in coastal environment off Fukushima for safety concerns of radioactive contamination. Radiocesium concentrations in sediments are important for understanding fishing ground conditions and for proving the safety of fisheries products in Fukushima. In this study, monthly monitoring data collected from May 2011 to March 2020 were analyzed to describe the temporal variability of 137Cs concentrations in coastal sediments off Fukushima (total of 3647 samples from eight lines at depths of 7-125 m off Fukushima, and three sites in Matsukawa-ura Lagoon). The 137Cs concentration in sediment showed a decreasing trend, but our nonlinear model fitting suggested that this rate of decrease had slowed down. Additionally, 137Cs concentrations were up to 4.08 times greater in shallow sampling sites (7, 10, 20 m depth) following heavy rainfall events (before five months vs. after five months), such as typhoons. These observations were consistent with increasing input from particulate 137Cs fluxes from rivers and increasing dissolved 137Cs concentrations in seawater. Finally, our numerical modeling suggested that riverine 137Cs input could maintain 137Cs concentrations in coastal sediment. These results indicate that riverine 137Cs input following heavy rainfall events is the main factor for maintaining 137Cs concentrations in coastal sediments near the Fukushima Daiichi Nuclear Power Plant.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Radioisótopos de Césio/análise , Sedimentos Geológicos , Japão , Poluentes Radioativos da Água/análise
7.
Chem Sci ; 12(38): 12827-12837, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34703570

RESUMO

KRAS forms transient dimers and higher-order multimers (nanoclusters) on the plasma membrane, which drive MAPK signaling and cell proliferation. KRAS is a frequently mutated oncogene, and while it is well known that the most prevalent mutation, G12D, impairs GTP hydrolysis, thereby increasing KRAS activation, G12D has also been shown to enhance nanoclustering. Elucidating structures of dynamic KRAS assemblies on a membrane has been challenging, thus we have refined our NMR approach that uses nanodiscs to study KRAS associated with membranes. We incorporated paramagnetic relaxation enhancement (PRE) titrations and interface mutagenesis, which revealed that, in addition to the symmetric 'α-α' dimerization interface shared with wild-type KRAS, the G12D mutant also self-associates through an asymmetric 'α-ß' interface. The 'α-ß' association is dependent on the presence of phosphatidylserine lipids, consistent with previous reports that this lipid promotes KRAS self-assembly on the plasma membrane in cells. Experiments using engineered mutants to spoil each interface, together with PRE probes attached to the membrane or free in solvent, suggest that dimerization through the primary 'α-α' interface releases ß interfaces from the membrane promoting formation of the secondary 'α-ß' interaction, potentially initiating nanoclustering. In addition, the small molecule BI-2852 binds at a ß-ß interface, stabilizing a new dimer configuration that outcompetes native dimerization and blocks the effector-binding site. Our data indicate that KRAS self-association involves a delicately balanced conformational equilibrium between transient states, which is sensitive to disease-associated mutation and small molecule inhibitors. The methods developed here are applicable to biologically important transient interactions involving other membrane-associated proteins.

8.
Glia ; 69(12): 2917-2932, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34427354

RESUMO

Rare coding variants of the microglial triggering receptor expressed on myeloid cells 2 (TREM2) confer an increased risk for Alzheimer's disease (AD) characterized by the progressive accumulation of aggregated forms of amyloid ß peptides (Aß). Aß peptides are generated by proteolytic processing of the amyloid precursor protein (APP). Heterogeneity in proteolytic cleavages and additional post-translational modifications result in the production of several distinct Aß variants that could differ in their aggregation behavior and toxic properties. Here, we sought to assess whether post-translational modifications of Aß affect the interaction with TREM2. Biophysical and biochemical methods revealed that TREM2 preferentially interacts with oligomeric Aß, and that phosphorylation of Aß increases this interaction. Phosphorylation of Aß also affected the TREM2 dependent interaction and phagocytosis by primary microglia and in APP transgenic mouse models. Thus, TREM2 function is important for sensing phosphorylated Aß variants in distinct aggregation states and reduces the accumulation and deposition of these toxic Aß species in preclinical models of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Microglia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
9.
Pediatr Pulmonol ; 56(8): 2570-2575, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33983679

RESUMO

BACKGROUND: Oral care using chlorhexidine has been considered useful in reducing the incidence of ventilator-associated pneumonia (VAP) in adult patients. However, no study has proved the effect of oral care in reducing the incidence of VAP in preterm infants. OBJECTIVES: To investigate the efficacy of oral care using a sponge brush moistened with sterile water in reducing the bacterial load in the oral cavity and the incidence of early-onset VAP in preterm infants METHODS: The bacterial number in the oral cavity was evaluated on-site with the dielectrophoretic impedance measurement system. Bacterial numbers before and after oral care were investigated prospectively. Then, the incidence of early-onset VAP was compared retrospectively between infants who received oral care before re-intubation and those who did not. RESULTS: The mean bacterial number (cfu/ml) in the oral cavity in infants managed with endotracheal intubation (n = 23), continuous positive airway pressure (n = 38), and high-flow nasal cannula (n = 22) significantly reduced (p < .01) after versus before oral care (4.46 × 107 vs. 1.25 × 106 ; 1.32 × 107 vs. 6.82 × 105 ; and 1.68 × 107 vs. 6.50 × 105 ). The incidence rate of early-onset VAP after re-intubation was 51% (20/39) in patients who did not receive oral care. Then, it significantly decreased to 21% (7/33; p = .009) after receiving oral care. CONCLUSION: Oral care with sterile water may be effective in reducing the bacterial load in the oral cavity and the incidence of early-onset VAP in preterm infants.


Assuntos
Pneumonia Associada à Ventilação Mecânica , Adulto , Clorexidina , Humanos , Incidência , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Pneumonia Associada à Ventilação Mecânica/epidemiologia , Pneumonia Associada à Ventilação Mecânica/prevenção & controle , Estudos Retrospectivos
10.
Redox Biol ; 43: 101983, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33933883

RESUMO

In addition to its function of innate immunity against invading pathogens, neutrophil extracellular traps (NETs) promote thrombosis, autoimmune disease, and cancer metastasis; therefore, unnecessary exposure to the triggers of infection-independent NET generation should be avoided. We herein show that inhibition of forward-mode Na+/Ca2+ exchange by amiloride analogs, 5-(N-ethyl-N-isopropyl)amiloride (EIPA) and 5-(N-Methyl-N-isobutyl)amiloride (MIA), triggers NETotic cell death independently of infectious stimuli. Isolated human neutrophils treated with EIPA and MIA undergo NETotic cell death by an increase of intracellular Ca2+ following activation of NADPH oxidase and the resultant upregulation of intracellular ROS. EIPA- and MIA-mediated intracellular Ca2+ increase is attributed to the competitive binding of EIPA and MIA against Na+ to Na+/Ca2+ exchanger 1 (NCX1). These results demonstrate a new mechanism of infection-independent NET generation and implicate NCX1 as a physiologic regulator of intracellular calcium balance and NETotic cell death.


Assuntos
Cálcio , Trocadores de Sódio-Hidrogênio , Cálcio/metabolismo , Morte Celular , Humanos , NADPH Oxidases , Sódio/metabolismo
11.
J Biol Chem ; 296: 100631, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33823153

RESUMO

TREM2 is a pattern recognition receptor, expressed on microglia and myeloid cells, detecting lipids and Aß and inducing an innate immune response. Missense mutations (e.g., R47H) of TREM2 increase risk of Alzheimer's disease (AD). The soluble ectodomain of wild-type TREM2 (sTREM2) has been shown to protect against AD in vivo, but the underlying mechanisms are unclear. We show that Aß oligomers bind to cellular TREM2, inducing shedding of the sTREM2 domain. Wild-type sTREM2 bound to Aß oligomers (measured by single-molecule imaging, dot blots, and Bio-Layer Interferometry) inhibited Aß oligomerization and disaggregated preformed Aß oligomers and protofibrils (measured by transmission electron microscopy, dot blots, and size-exclusion chromatography). Wild-type sTREM2 also inhibited Aß fibrillization (measured by imaging and thioflavin T fluorescence) and blocked Aß-induced neurotoxicity (measured by permeabilization of artificial membranes and by loss of neurons in primary neuronal-glial cocultures). In contrast, the R47H AD-risk variant of sTREM2 is less able to bind and disaggregate oligomeric Aß but rather promotes Aß protofibril formation and neurotoxicity. Thus, in addition to inducing an immune response, wild-type TREM2 may protect against amyloid pathology by the Aß-induced release of sTREM2, which blocks Aß aggregation and neurotoxicity. In contrast, R47H sTREM2 promotes Aß aggregation into protofibril that may be toxic to neurons. These findings may explain how wild-type sTREM2 apparently protects against AD in vivo and why a single copy of the R47H variant gene is associated with increased AD risk.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Glicoproteínas de Membrana/fisiologia , Proteínas Mutantes/metabolismo , Mutação , Neurônios/patologia , Síndromes Neurotóxicas/patologia , Receptores Imunológicos/fisiologia , Doença de Alzheimer , Amiloide/metabolismo , Animais , Camundongos , Camundongos Knockout , Proteínas Mutantes/genética , Neurônios/metabolismo , Síndromes Neurotóxicas/etiologia
12.
Mol Ther ; 29(6): 1984-2000, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33578036

RESUMO

The ongoing COVID-19 pandemic has highlighted the immediate need for the development of antiviral therapeutics targeting different stages of the SARS-CoV-2 life cycle. We developed a bioluminescence-based bioreporter to interrogate the interaction between the SARS-CoV-2 viral spike (S) protein and its host entry receptor, angiotensin-converting enzyme 2 (ACE2). The bioreporter assay is based on a nanoluciferase complementation reporter, composed of two subunits, large BiT and small BiT, fused to the S receptor-binding domain (RBD) of the SARS-CoV-2 S protein and ACE2 ectodomain, respectively. Using this bioreporter, we uncovered critical host and viral determinants of the interaction, including a role for glycosylation of asparagine residues within the RBD in mediating successful viral entry. We also demonstrate the importance of N-linked glycosylation to the RBD's antigenicity and immunogenicity. Our study demonstrates the versatility of our bioreporter in mapping key residues mediating viral entry as well as screening inhibitors of the ACE2-RBD interaction. Our findings point toward targeting RBD glycosylation for therapeutic and vaccine strategies against SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Anticorpos Neutralizantes/farmacologia , Bioensaio , Lectinas/farmacologia , Receptores Virais/química , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Asparagina/química , Asparagina/metabolismo , Sítios de Ligação , COVID-19/diagnóstico , COVID-19/imunologia , COVID-19/virologia , Genes Reporter , Glicosilação/efeitos dos fármacos , Células HEK293 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Receptores Virais/antagonistas & inibidores , Receptores Virais/genética , Receptores Virais/imunologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Internalização do Vírus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
13.
J Biomol NMR ; 74(10-11): 531-554, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32804298

RESUMO

Mutations in RAS oncogenes occur in ~ 30% of human cancers, with KRAS being the most frequently altered isoform. RAS proteins comprise a conserved GTPase domain and a C-terminal lipid-modified tail that is unique to each isoform. The GTPase domain is a 'switch' that regulates multiple signaling cascades that drive cell growth and proliferation when activated by binding GTP, and the signal is terminated by GTP hydrolysis. Oncogenic RAS mutations disrupt the GTPase cycle, leading to accumulation of the activated GTP-bound state and promoting proliferation. RAS is a key target in oncology, however it lacks classic druggable pockets and has been extremely challenging to target. RAS signaling has thus been targeted indirectly, by harnessing key downstream effectors as well as upstream regulators, or disrupting the proper membrane localization required for signaling, by inhibiting either lipid modification or 'carrier' proteins. As a small (20 kDa) protein with multiple conformers in dynamic equilibrium, RAS is an excellent candidate for NMR-driven characterization and screening for direct inhibitors. Several molecules have been discovered that bind RAS and stabilize shallow pockets through conformational selection, and recent compounds have achieved substantial improvements in affinity. NMR-derived insight into targeting the RAS-membrane interface has revealed a new strategy to enhance the potency of small molecules, while another approach has been development of peptidyl inhibitors that bind through large interfaces rather than deep pockets. Remarkable progress has been made with mutation-specific covalent inhibitors that target the thiol of a G12C mutant, and these are now in clinical trials. Here we review the history of RAS inhibitor development and highlight the utility of NMR and integrated biophysical approaches in RAS drug discovery.


Assuntos
Descoberta de Drogas/métodos , Proteínas de Membrana/antagonistas & inibidores , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Mutação , Prenilação/efeitos dos fármacos , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Bibliotecas de Moléculas Pequenas/química
14.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326637

RESUMO

Calmodulin (CaM) is a Ca2+-sensor that regulates a wide variety of target proteins, many of which interact through short basic helical motifs bearing two hydrophobic 'anchor' residues. CaM comprises two globular lobes, each containing a pair of EF-hand Ca2+-binding motifs that form a Ca2+-induced hydrophobic pocket that binds an anchor residue. A central flexible linker allows CaM to accommodate diverse targets. Several reported CaM interactors lack these anchors but contain Lys/Arg-rich polybasic sequences adjacent to a lipidated N- or C-terminus. Ca2+-CaM binds the myristoylated N-terminus of CAP23/NAP22 with intimate interactions between the lipid and a surface comprised of the hydrophobic pockets of both lobes, while the basic residues make electrostatic interactions with the negatively charged surface of CaM. Ca2+-CaM binds farnesylcysteine, derived from the farnesylated polybasic C-terminus of KRAS4b, with the lipid inserted into the C-terminal lobe hydrophobic pocket. CaM sequestration of the KRAS4b farnesyl moiety disrupts KRAS4b membrane association and downstream signaling. Phosphorylation of basic regions of N-/C-terminal lipidated CaM targets can reduce affinity for both CaM and the membrane. Since both N-terminal myristoylated and C-terminal prenylated proteins use a Singly Lipidated Polybasic Terminus (SLIPT) for CaM binding, we propose these polybasic lipopeptide elements comprise a non-canonical CaM-binding motif.


Assuntos
Sinalização do Cálcio/genética , Calmodulina/química , Calmodulina/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Motivos de Aminoácidos , Cálcio/metabolismo , Calmodulina/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Fosforilação , Plantas/química , Plantas/genética , Plantas/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Conformação Proteica , Isoformas de Proteínas , Prenilação de Proteína , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Eletricidade Estática
15.
Sci Signal ; 13(625)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234958

RESUMO

KRAS4b is a small guanosine triphosphatase (GTPase) protein that regulates several signal transduction pathways that underlie cell proliferation, differentiation, and survival. KRAS4b function requires prenylation of its C terminus and recruitment to the plasma membrane, where KRAS4b activates effector proteins including the RAF family of kinases. The Ca2+-sensing protein calmodulin (CaM) has been suggested to regulate the localization of KRAS4b through direct, Ca2+-dependent interaction, but how CaM and KRAS4b functionally interact is controversial. Here, we determined a crystal structure, which was supported by solution nuclear magnetic resonance (NMR), that revealed the sequestration of the prenyl moiety of KRAS4b in the hydrophobic pocket of the C-terminal lobe of Ca2+-bound CaM. Our engineered fluorescence resonance energy transfer (FRET)-based biosensor probes (CaMeRAS) showed that, upon stimulation of Ca2+ influx by extracellular ligands, KRAS4b reversibly translocated in a Ca2+-CaM-dependent manner from the plasma membrane to the cytoplasm in live HeLa and HEK293 cells. These results reveal a mechanism underlying the inhibition of KRAS4b activity by Ca2+ signaling pathways.


Assuntos
Calmodulina , Membrana Celular , Lipídeos de Membrana , Proteínas Proto-Oncogênicas p21(ras) , Calmodulina/química , Calmodulina/genética , Calmodulina/metabolismo , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Células HeLa , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/genética , Lipídeos de Membrana/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
16.
Angew Chem Int Ed Engl ; 59(27): 11037-11045, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32227412

RESUMO

KRAS homo-dimerization has been implicated in the activation of RAF kinases, however, the mechanism and structural basis remain elusive. We developed a system to study KRAS dimerization on nanodiscs using paramagnetic relaxation enhancement (PRE) NMR spectroscopy, and determined distinct structures of membrane-anchored KRAS dimers in the active GTP- and inactive GDP-loaded states. Both dimerize through an α4-α5 interface, but the relative orientation of the protomers and their contacts differ substantially. Dimerization of KRAS-GTP, stabilized by electrostatic interactions between R135 and E168, favors an orientation on the membrane that promotes accessibility of the effector-binding site. Remarkably, "cross"-dimerization between GTP- and GDP-bound KRAS molecules is unfavorable. These models provide a platform to elucidate the structural basis of RAF activation by RAS and to develop inhibitors that can disrupt the KRAS dimerization. The methodology is applicable to many other farnesylated small GTPases.


Assuntos
Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sítios de Ligação , Dimerização , Humanos , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas p21(ras)/química
17.
J Ultrasound Med ; 39(2): 379-383, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31400014

RESUMO

Previous studies have highlighted the importance of confirming the position of an umbilical venous catheter (UVC) tip by an ultrasound (US) examination. However, methods for preventing insertion into the portal circulation under US guidance have not yet been established. We report 15 cases in which a UVC was successfully passed through the ductus venosus by compressing the upper abdomen near the portal sinus of the liver to align the umbilical vein and ductus venosus under US guidance. The UVC was inserted into the correct position in 14 of the 15 neonates (93%) without complications.


Assuntos
Cateterismo/métodos , Ultrassonografia de Intervenção , Veias Umbilicais/anatomia & histologia , Feminino , Humanos , Recém-Nascido , Masculino , Veias Umbilicais/diagnóstico por imagem
18.
J Mol Biol ; 432(2): 367-383, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31626806

RESUMO

Store operated calcium (Ca2+) entry (SOCE) is the process whereby endoplasmic reticulum (ER) Ca2+ store depletion causes Orai1-composed Ca2+ channels on the plasma membrane (PM) to open, mediating a rise in cytosolic Ca2+ levels. Stromal interaction molecules (STIMs) are the proteins that directly sense ER Ca2+ content and gate Orai1 channels due to store depletion. The trigger for STIM activation is Ca2+ unbinding from the ER lumen-oriented domains, which consist of a nonconserved amino (N) terminal region and EF-hand and sterile α motif (SAM) domains (EF-SAM), highly conserved from humans to Caenorhabditis elegans. Solution NMR structures of the human EF-SAM domains have been determined at high Ca2+ concentrations; however, no direct structural view of the Ca2+ binding mode has been elucidated. Further, no atomic resolution data currently exists on EF-SAM at low Ca2+ levels. Here, we determined the X-ray crystal structure of the C. elegans STIM luminal domain, revealing that EF-SAM binds a single Ca2+ ion with pentagonal bipyramidal geometry and an ancillary α-helix formed by the N-terminal region acts as a brace to stabilize EF-SAM. Using solution NMR, we observed EF-hand domain unfolding and a conformational exchange between folded and unfolded states involving the ancillary α-helix and the canonical EF-hand in low Ca2+. Remarkably, we also detected an α-helix (+Ca2+) to ß-strand (-Ca2+) transition at the terminal SAM domain α-helix. Collectively, our analyses indicate that one canonically bound Ca2+ ion is sufficient to stabilize the quiescent luminal domain structure, precluding unfolding, conformational exchange, and secondary structure transformation.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Membrana Celular/ultraestrutura , Proteínas de Membrana/ultraestrutura , Proteína ORAI1/genética , Molécula 1 de Interação Estromal/ultraestrutura , Sequência de Aminoácidos/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestrutura , Cálcio/química , Cálcio/metabolismo , Sinalização do Cálcio/genética , Membrana Celular/genética , Cristalografia por Raios X , Motivos EF Hand/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/ultraestrutura , Humanos , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica/genética , Domínios Proteicos/genética , Estrutura Secundária de Proteína/genética , Molécula 1 de Interação Estromal/genética
19.
Nat Commun ; 9(1): 5116, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504805

RESUMO

Neutrophil extracellular traps (NETs) promote cancer metastasis in preclinical models following massive exogenous inflammatory stimuli. It remains unknown whether cancer hosts under physiologic conditions experience NETosis and consequent metastasis. Here we show that plasma redox imbalance caused by albumin oxidation promotes inflammation-independent NETosis. Albumin is the major source of free thiol that maintains redox balance. Oxidation of albumin-derived free thiol is sufficient to trigger NETosis via accumulation of reactive oxygen species within neutrophils. The resultant NETs are found predominantly within lungs where they contribute to the colonization of circulating tumor cells leading to pulmonary metastases. These effects are abrogated by pharmacologic inhibition of NET formation. Moreover, albumin oxidation is associated with pulmonary metastasis in a cohort of head and neck cancer patients. These results implicate plasma redox balance as an endogenous and physiologic regulator of NETosis and pulmonary cancer metastasis, providing new therapeutic and diagnostic opportunities for combatting cancer progression.


Assuntos
Armadilhas Extracelulares/metabolismo , Neoplasias Pulmonares/sangue , Espécies Reativas de Oxigênio/sangue , Albuminas/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Neutrófilos/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...