Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 18(7): 1123-1138, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28539390

RESUMO

BAT-controlled thermogenic activity is thought to be required for its capacity to prevent the development of insulin resistance. This hypothesis predicts that mediators of thermogenesis may help prevent diet-induced insulin resistance. We report that the mitochondrial fusion protein Mitofusin 2 (Mfn2) in BAT is essential for cold-stimulated thermogenesis, but promotes insulin resistance in obese mice. Mfn2 deletion in mice through Ucp1-cre (BAT-Mfn2-KO) causes BAT lipohypertrophy and cold intolerance. Surprisingly however, deletion of Mfn2 in mice fed a high fat diet (HFD) results in improved insulin sensitivity and resistance to obesity, while impaired cold-stimulated thermogenesis is maintained. Improvement in insulin sensitivity is associated with a gender-specific remodeling of BAT mitochondrial function. In females, BAT mitochondria increase their efficiency for ATP-synthesizing fat oxidation, whereas in BAT from males, complex I-driven respiration is decreased and glycolytic capacity is increased. Thus, BAT adaptation to obesity is regulated by Mfn2 and with BAT-Mfn2 absent, BAT contribution to prevention of insulin resistance is independent and inversely correlated to whole-body cold-stimulated thermogenesis.


Assuntos
Tecido Adiposo Marrom/metabolismo , GTP Fosfo-Hidrolases/deficiência , GTP Fosfo-Hidrolases/genética , Resistência à Insulina , Termogênese/genética , Animais , Dieta Hiperlipídica , Metabolismo Energético , Feminino , Glicólise , Masculino , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Obesidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...