Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701784

RESUMO

The oxidative phosphorylation (OXPHOS) system is intricately organized, with respiratory complexes forming super-assembled quaternary structures whose assembly mechanisms and physiological roles remain under investigation. Cox7a2l, also known as Scaf1, facilitates complex III and complex IV (CIII-CIV) super-assembly, enhancing energetic efficiency in various species. We examined the role of Cox7a1, another Cox7a family member, in supercomplex assembly and muscle physiology. Zebrafish lacking Cox7a1 exhibited reduced CIV2 formation, metabolic alterations, and non-pathological muscle performance decline. Additionally, cox7a1-/- hearts displayed a pro-regenerative metabolic profile, impacting cardiac regenerative response. The distinct phenotypic effects of cox7a1-/- and cox7a2l-/- underscore the diverse metabolic and physiological consequences of impaired supercomplex formation, emphasizing the significance of Cox7a1 in muscle maturation within the OXPHOS system.

2.
J Physiol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630964

RESUMO

In eukaryotic cells, aerobic energy is produced by mitochondria through oxygen uptake. However, little is known about the early mitochondrial responses to moderate hypobaric hypoxia (MHH) in highly metabolic active tissues. Here, we describe the mitochondrial responses to acute MHH in the heart and skeletal muscle. Rats were randomly allocated into a normoxia control group (n = 10) and a hypoxia group (n = 30), divided into three groups (0, 6, and 24 h post-MHH). The normoxia situation was recapitulated at the University of Granada, at 662 m above sea level. The MHH situation was performed at the High-Performance Altitude Training Centre of Sierra Nevada located in Granada at 2320 m above sea level. We found a significant increase in mitochondrial supercomplex assembly in the heart as soon as the animals reached 2320 m above sea level and their levels are maintained 24 h post-exposure, but not in skeletal muscle. Furthermore, in skeletal muscle, at 0 and 6 h, there was increased dynamin-related protein 1 (Drp1) expression and a significant reduction in Mitofusin 2. In conclusion, mitochondria from the muscle and heart respond differently to MHH: mitochondrial supercomplexes increase in the heart, whereas, in skeletal muscle, the mitochondrial pro-fission response is trigged. Considering that skeletal muscle was not actively involved in the ascent when the heart was beating faster to compensate for the hypobaric, hypoxic conditions, we speculate that the different responses to MHH are a result of the different energetic requirements of the tissues upon MHH. KEY POINTS: The heart and the skeletal muscle showed different mitochondrial responses to moderate hypobaric hypoxia. Moderate hypobaric hypoxia increases the assembly of the electron transport chain complexes into supercomplexes in the heart. Skeletal muscle shows an early mitochondrial pro-fission response following exposure to moderate hypobaric hypoxia.

3.
Redox Biol ; 69: 103001, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145589

RESUMO

Respiratory complex I plays a crucial role in the mitochondrial electron transport chain and shows promise as a therapeutic target for various human diseases. While most studies focus on inhibiting complex I at the Q-site, little is known about inhibitors targeting other sites within the complex. In this study, we demonstrate that diphenyleneiodonium (DPI), a N-site inhibitor, uniquely affects the stability of complex I by reacting with its flavin cofactor FMN. Treatment with DPI blocks the final stage of complex I assembly, leading to the complete and reversible degradation of complex I in different cellular models. Growing cells in medium lacking the FMN precursor riboflavin or knocking out the mitochondrial flavin carrier gene SLC25A32 results in a similar complex I degradation. Overall, our findings establish a direct connection between mitochondrial flavin homeostasis and complex I stability and assembly, paving the way for novel pharmacological strategies to regulate respiratory complex I.


Assuntos
Complexo I de Transporte de Elétrons , Riboflavina , Humanos , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Riboflavina/metabolismo , Mitocôndrias/metabolismo
5.
Nature ; 618(7964): 365-373, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225978

RESUMO

Birth presents a metabolic challenge to cardiomyocytes as they reshape fuel preference from glucose to fatty acids for postnatal energy production1,2. This adaptation is triggered in part by post-partum environmental changes3, but the molecules orchestrating cardiomyocyte maturation remain unknown. Here we show that this transition is coordinated by maternally supplied γ-linolenic acid (GLA), an 18:3 omega-6 fatty acid enriched in the maternal milk. GLA binds and activates retinoid X receptors4 (RXRs), ligand-regulated transcription factors that are expressed in cardiomyocytes from embryonic stages. Multifaceted genome-wide analysis revealed that the lack of RXR in embryonic cardiomyocytes caused an aberrant chromatin landscape that prevented the induction of an RXR-dependent gene expression signature controlling mitochondrial fatty acid homeostasis. The ensuing defective metabolic transition featured blunted mitochondrial lipid-derived energy production and enhanced glucose consumption, leading to perinatal cardiac dysfunction and death. Finally, GLA supplementation induced RXR-dependent expression of the mitochondrial fatty acid homeostasis signature in cardiomyocytes, both in vitro and in vivo. Thus, our study identifies the GLA-RXR axis as a key transcriptional regulatory mechanism underlying the maternal control of perinatal cardiac metabolism.


Assuntos
Ácidos Graxos , Glucose , Coração , Leite Humano , Ácido gama-Linolênico , Feminino , Humanos , Recém-Nascido , Gravidez , Cromatina/genética , Ácidos Graxos/metabolismo , Ácido gama-Linolênico/metabolismo , Ácido gama-Linolênico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Coração/efeitos dos fármacos , Coração/embriologia , Coração/crescimento & desenvolvimento , Homeostase , Técnicas In Vitro , Leite Humano/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Receptores X de Retinoides/metabolismo , Fatores de Transcrição/metabolismo
6.
Nat Metab ; 5(4): 546-562, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37100996

RESUMO

Mitochondria have cell-type specific phenotypes, perform dozens of interconnected functions and undergo dynamic and often reversible physiological recalibrations. Given their multifunctional and malleable nature, the frequently used terms 'mitochondrial function' and 'mitochondrial dysfunction' are misleading misnomers that fail to capture the complexity of mitochondrial biology. To increase the conceptual and experimental specificity in mitochondrial science, we propose a terminology system that distinguishes between (1) cell-dependent properties, (2) molecular features, (3) activities, (4) functions and (5) behaviours. A hierarchical terminology system that accurately captures the multifaceted nature of mitochondria will achieve three important outcomes. It will convey a more holistic picture of mitochondria as we teach the next generations of mitochondrial biologists, maximize progress in the rapidly expanding field of mitochondrial science, and also facilitate synergy with other disciplines. Improving specificity in the language around mitochondrial science is a step towards refining our understanding of the mechanisms by which this unique family of organelles contributes to cellular and organismal health.


Assuntos
Mitocôndrias , Mitocôndrias/fisiologia
7.
Biol Chem ; 404(5): 399-415, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36952351

RESUMO

The orchestrated activity of the mitochondrial respiratory or electron transport chain (ETC) and ATP synthase convert reduction power (NADH, FADH2) into ATP, the cell's energy currency in a process named oxidative phosphorylation (OXPHOS). Three out of the four ETC complexes are found in supramolecular assemblies: complex I, III, and IV form the respiratory supercomplexes (SC). The plasticity model suggests that SC formation is a form of adaptation to changing conditions such as energy supply, redox state, and stress. Complex I, the NADH-dehydrogenase, is part of the largest supercomplex (CI + CIII2 + CIVn). Here, we demonstrate the role of NDUFB10, a subunit of the membrane arm of complex I, in complex I and supercomplex assembly on the one hand and bioenergetics function on the other. NDUFB10 knockout was correlated with a decrease of SCAF1, a supercomplex assembly factor, and a reduction of respiration and mitochondrial membrane potential. This likely is due to loss of proton pumping since the CI P P -module is downregulated and the P D -module is completely abolished in NDUFB10 knock outs.


Assuntos
Complexo I de Transporte de Elétrons , NADH Desidrogenase , Trifosfato de Adenosina/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , NAD/metabolismo , Fosforilação Oxidativa , NADH Desidrogenase/metabolismo
8.
Immunity ; 56(3): 516-530.e9, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36738738

RESUMO

In vitro studies have associated oxidative phosphorylation (OXPHOS) with anti-inflammatory macrophages, whereas pro-inflammatory macrophages rely on glycolysis. However, the metabolic needs of macrophages in tissues (TMFs) to fulfill their homeostatic activities are incompletely understood. Here, we identified OXPHOS as the highest discriminating process among TMFs from different organs in homeostasis by analysis of RNA-seq data in both humans and mice. Impairing OXPHOS in TMFs via Tfam deletion differentially affected TMF populations. Tfam deletion resulted in reduction of alveolar macrophages (AMs) due to impaired lipid-handling capacity, leading to increased cholesterol content and cellular stress, causing cell-cycle arrest in vivo. In obesity, Tfam depletion selectively ablated pro-inflammatory lipid-handling white adipose tissue macrophages (WAT-MFs), thus preventing insulin resistance and hepatosteatosis. Hence, OXPHOS, rather than glycolysis, distinguishes TMF populations and is critical for the maintenance of TMFs with a high lipid-handling activity, including pro-inflammatory WAT-MFs. This could provide a selective therapeutic targeting tool.


Assuntos
Inflamação , Fosforilação Oxidativa , Humanos , Camundongos , Animais , Inflamação/metabolismo , Macrófagos/metabolismo , Homeostase , Lipídeos , Tecido Adiposo/metabolismo
9.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674816

RESUMO

As the last step of the OXPHOS system, mitochondrial ATP synthase (or complex V) is responsible for ATP production by using the generated proton gradient, but also has an impact on other important functions linked to this system. Mutations either in complex V structural subunits, especially in mtDNA-encoded ATP6 gene, or in its assembly factors, are the molecular cause of a wide variety of human diseases, most of them classified as neurodegenerative disorders. The role of ATP synthase alterations in cancer development or metastasis has also been postulated. In this work, we reported the generation and characterization of the first mt-Atp6 pathological mutation in mouse cells, an m.8414A>G transition that promotes an amino acid change from Asn to Ser at a highly conserved residue of the protein (p.N163S), located near the path followed by protons from the intermembrane space to the mitochondrial matrix. The phenotypic consequences of the p.N163S change reproduce the effects of MT-ATP6 mutations in human diseases, such as dependence on glycolysis, defective OXPHOS activity, ATP synthesis impairment, increased ROS generation or mitochondrial membrane potential alteration. These observations demonstrate that this mutant cell line could be of great interest for the generation of mouse models with the aim of studying human diseases caused by alterations in ATP synthase. On the other hand, mutant cells showed lower migration capacity, higher expression of MHC-I and slightly lower levels of HIF-1α, indicating a possible reduction of their tumorigenic potential. These results could suggest a protective role of ATP synthase inhibition against tumor transformation that could open the door to new therapeutic strategies in those cancer types relying on OXPHOS metabolism.


Assuntos
Mitocôndrias , ATPases Mitocondriais Próton-Translocadoras , Animais , Humanos , Camundongos , Trifosfato de Adenosina/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação , Fenótipo , Respiração
10.
Biochim Biophys Acta Bioenerg ; 1864(1): 148936, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395975

RESUMO

Oxidative phosphorylation is a common process to most organisms in which the main function is to generate an electrochemical gradient across the inner mitochondrial membrane (IMM) and to make energy available to the cell. However, plants, many fungi and some animals maintain non-energy conserving oxidases which serve as a bypass to coupled respiration. Namely, the alternative NADH:ubiquinone oxidoreductase NDI1, present in the complex I (CI)-lacking Saccharomyces cerevisiae, and the alternative oxidase, ubiquinol:oxygen oxidoreductase AOX, present in many organisms across different kingdoms. In the last few years, these alternative oxidases have been used to dissect previously indivisible processes in bioenergetics and have helped to discover, understand, and corroborate important processes in mitochondria. Here, we review how the use of alternative oxidases have contributed to the knowledge in CI stability, bioenergetics, redox biology, and the implications of their use in current and future research.


Assuntos
Oxirredutases , Proteínas de Saccharomyces cerevisiae , Animais , Transporte de Elétrons , Oxirredutases/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/química , Complexo I de Transporte de Elétrons/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Nat Metab ; 4(10): 1336-1351, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36253618

RESUMO

Mitochondrial respiratory complexes form superassembled structures called supercomplexes. COX7A2L is a supercomplex-specific assembly factor in mammals, although its implication for supercomplex formation and cellular metabolism remains controversial. Here we identify a role for COX7A2L for mitochondrial supercomplex formation in humans. By using human cis-expression quantitative trait loci data, we highlight genetic variants in the COX7A2L gene that affect its skeletal muscle expression specifically. The most significant cis-expression quantitative trait locus is a 10-bp insertion in the COX7A2L 3' untranslated region that increases messenger RNA stability and expression. Human myotubes harboring this insertion have more supercomplexes and increased respiration. Notably, increased COX7A2L expression in the muscle is associated with lower body fat and improved cardiorespiratory fitness in humans. Accordingly, specific reconstitution of Cox7a2l expression in C57BL/6J mice leads to higher maximal oxygen consumption, increased lean mass and increased energy expenditure. Furthermore, Cox7a2l expression in mice is induced specifically in the muscle upon exercise. These findings elucidate the genetic basis of mitochondrial supercomplex formation and function in humans and show that COX7A2L plays an important role in cardiorespiratory fitness, which could have broad therapeutic implications in reducing cardiovascular mortality.


Assuntos
Aptidão Cardiorrespiratória , Animais , Humanos , Camundongos , Regiões 3' não Traduzidas , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo
12.
J Clin Invest ; 132(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36066993

RESUMO

Increasing evidence has pointed to the important function of T cells in controlling immune homeostasis and pathogenesis after myocardial infarction (MI), although the underlying molecular mechanisms remain elusive. In this study, a broad analysis of immune markers in 283 patients revealed significant CD69 overexpression on Tregs after MI. Our results in mice showed that CD69 expression on Tregs increased survival after left anterior descending (LAD) coronary artery ligation. Cd69-/- mice developed strong IL-17+ γδT cell responses after ischemia that increased myocardial inflammation and, consequently, worsened cardiac function. CD69+ Tregs, by induction of AhR-dependent CD39 ectonucleotidase activity, induced apoptosis and decreased IL-17A production in γδT cells. Adoptive transfer of CD69+ Tregs into Cd69-/- mice after LAD ligation reduced IL-17+ γδT cell recruitment, thus increasing survival. Consistently, clinical data from 2 independent cohorts of patients indicated that increased CD69 expression in peripheral blood cells after acute MI was associated with a lower risk of rehospitalization for heart failure (HF) after 2.5 years of follow-up. This result remained significant after adjustment for age, sex, and traditional cardiac damage biomarkers. Our data highlight CD69 expression on Tregs as a potential prognostic factor and a therapeutic option to prevent HF after MI.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Camundongos , Transferência Adotiva/métodos , Apoptose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Interleucina-17/metabolismo , Infarto do Miocárdio/patologia , Linfócitos T Reguladores
13.
J Vis Exp ; (185)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35938801

RESUMO

Ubiquinone (CoQ) pools in the inner mitochondrial membrane (IMM) are partially segmented to either complex I or FAD-dependent enzymes. Such subdivision can be easily assessed by a comparative assay using NADH or succinate as electron donors in frozen-thawed mitochondria, in which cytochrome c (cyt c) reduction is measured. The assay relies on the effect of Na+ on the IMM, decreasing its fluidity. Here, we present a protocol to measure NADH-cyt c oxidoreductase activity and succinate-cyt c oxidoreductase activities in the presence of NaCl or KCl. The reactions, which rely on the mixture of reagents in a cuvette in a stepwise manner, are measured spectrophotometrically during 4 min in the presence of Na+ or K+. The same mixture is performed in parallel in the presence of the specific enzyme inhibitors in order to subtract the unspecific change in absorbance. NADH-cyt c oxidoreductase activity does not decrease in the presence of any of these cations. However, succinate-cyt c oxidoreductase activity decreases in the presence of NaCl. This simple experiment highlights: 1) the effect of Na+ in decreasing IMM fluidity and CoQ transfer; 2) that supercomplex I+III2 protects ubiquinone (CoQ) transfer from being affected by lowering IMM fluidity; 3) that CoQ transfer between CI and CIII is functionally different from CoQ transfer between CII and CIII. These facts support the existence of functionally differentiated CoQ pools in the IMM and show that they can be regulated by the changing Na+ environment of mitochondria.


Assuntos
Membranas Mitocondriais , Ubiquinona , NAD , Oxirredutases , Cloreto de Sódio , Ácido Succínico , Ubiquinona/farmacologia
14.
Redox Biol ; 54: 102353, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35777200

RESUMO

Metabolic plasticity is the ability of a biological system to adapt its metabolic phenotype to different environmental stressors. We used a whole-body and tissue-specific phenotypic, functional, proteomic, metabolomic and transcriptomic approach to systematically assess metabolic plasticity in diet-induced obese mice after a combined nutritional and exercise intervention. Although most obesity and overnutrition-related pathological features were successfully reverted, we observed a high degree of metabolic dysfunction in visceral white adipose tissue, characterized by abnormal mitochondrial morphology and functionality. Despite two sequential therapeutic interventions and an apparent global healthy phenotype, obesity triggered a cascade of events in visceral adipose tissue progressing from mitochondrial metabolic and proteostatic alterations to widespread cellular stress, which compromises its biosynthetic and recycling capacity. In humans, weight loss after bariatric surgery showed a transcriptional signature in visceral adipose tissue similar to our mouse model of obesity reversion. Overall, our data indicate that obesity prompts a lasting metabolic fingerprint that leads to a progressive breakdown of metabolic plasticity in visceral adipose tissue.


Assuntos
Resistência à Insulina , Tecido Adiposo/metabolismo , Animais , Homeostase , Gordura Intra-Abdominal/metabolismo , Camundongos , Obesidade/genética , Obesidade/metabolismo , Proteômica
15.
Aging (Albany NY) ; 14(15): 5966-5983, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35779570

RESUMO

Mitochondria and mtDNA variations contribute to specific aspects of the aging process. Here, we aimed to investigate the influence of mtDNA variation on joint damage in a model of aging using conplastic mice. A conplastic (BL/6NZB) mouse strain was developed with the C57BL/6JOlaHsd nuclear genome and NZB/OlaHsd mtDNA, for comparison with the original C57BL/6JOlaHsd strain (BL/6C57). Conplastic (BL/6NZB) and BL/6C57 mice were sacrificed at 25, 75, and 90 weeks of age. Hind knee joints were processed for histological analysis and joint pathology graded using the Mankin scoring system. By immunohistochemistry, cartilage expression of markers of autophagy (LC3, Beclin-1, and P62) and markers of senescence (MMP13, beta-Galactosidase, and p16) and proliferation (Ki67) were analyzed. We also measured the expression of 8-oxo-dG and cleaved caspase-3. Conplastic (BL/6NZB) mice presented lower Mankin scores at 25, 75, and 90 weeks of age, higher expression of LC3 and Beclin-1 and lower of P62 in cartilage than the original strain. Moreover, the downregulation of MMP13, beta-Galactosidase, and p16 was detected in cartilage from conplastic (BL/6NZB) mice, whereas higher Ki67 levels were detected in these mice. Finally, control BL/6C57 mice showed higher cartilage expression of 8-oxo-dG and cleaved caspase-3 than conplastic (BL/6NZB) mice. This study demonstrates that mtDNA genetic manipulation ameliorates joint aging damage in a conplastic mouse model, suggesting that mtDNA variability is a prognostic factor for aging-related osteoarthritis (OA) and that modulation of mitochondrial oxidative phosphorylation (OXPHOS) could be a novel therapeutic target for treating OA associated with aging.


Assuntos
DNA Mitocondrial , Osteoartrite , 8-Hidroxi-2'-Desoxiguanosina , Envelhecimento/fisiologia , Animais , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Caspase 3/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Modelos Animais de Doenças , Antígeno Ki-67/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , beta-Galactosidase/metabolismo
16.
Small ; 18(16): e2106570, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35263020

RESUMO

Manganese ferrite nanoparticles display interesting features in bioimaging and catalytic therapies. They have been recently used in theranostics as contrast agents in magnetic resonance imaging (MRI), and as catalase-mimicking nanozymes for hypoxia alleviation. These promising applications encourage the development of novel synthetic procedures to enhance the bioimaging and catalytic properties of these nanomaterials simultaneously. Herein, a cost-efficient synthetic microwave method is developed to manufacture ultrasmall manganese ferrite nanoparticles as advanced multimodal contrast agents in MRI and positron emission tomography (PET), and improved nanozymes. Such a synthetic method allows doping ferrites with Mn in a wide stoichiometric range (Mnx Fe3-x O4 , 0.1 ≤ x ≤ 2.4), affording a library of nanoparticles with different magnetic relaxivities and catalytic properties. These tuned magnetic properties give rise to either positive or dual-mode MRI contrast agents. On the other hand, higher levels of Mn doping enhance the catalytic efficiency of the resulting nanozymes. Finally, through their intracellular catalase-mimicking activity, these ultrasmall manganese ferrite nanoparticles induce an unprecedented tumor growth inhibition in a breast cancer murine model. All of these results show the robust characteristics of these nanoparticles for nanobiotechnological applications.


Assuntos
Meios de Contraste , Nanopartículas , Animais , Catalase , Compostos Férricos , Imageamento por Ressonância Magnética/métodos , Compostos de Manganês , Camundongos
17.
Circulation ; 145(14): 1084-1101, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35236094

RESUMO

BACKGROUND: In most eukaryotic cells, the mitochondrial DNA (mtDNA) is transmitted uniparentally and present in multiple copies derived from the clonal expansion of maternally inherited mtDNA. All copies are therefore near-identical, or homoplasmic. The presence of >1 mtDNA variant in the same cytoplasm can arise naturally or result from new medical technologies aimed at preventing mitochondrial genetic diseases and improving fertility. The latter is called divergent nonpathologic mtDNA heteroplasmy (DNPH). We hypothesized that DNPH is maladaptive and usually prevented by the cell. METHODS: We engineered and characterized DNPH mice throughout their lifespan using transcriptomic, metabolomic, biochemical, physiologic, and phenotyping techniques. We focused on in vivo imaging techniques for noninvasive assessment of cardiac and pulmonary energy metabolism. RESULTS: We show that DNPH impairs mitochondrial function, with profound consequences in critical tissues that cannot resolve heteroplasmy, particularly cardiac and skeletal muscle. Progressive metabolic stress in these tissues leads to severe pathology in adulthood, including pulmonary hypertension and heart failure, skeletal muscle wasting, frailty, and premature death. Symptom severity is strongly modulated by the nuclear context. CONCLUSIONS: Medical interventions that may generate DNPH should address potential incompatibilities between donor and recipient mtDNA.


Assuntos
Fragilidade , Cardiopatias , Hipertensão Pulmonar , Adulto , Animais , DNA Mitocondrial/genética , Fragilidade/patologia , Cardiopatias/patologia , Heteroplasmia , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Camundongos , Mitocôndrias/genética
18.
IUBMB Life ; 74(7): 629-644, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35166025

RESUMO

The flavin mononucleotide (FMN) cofactor of respiratory complex I occupies a key position in the electron transport chain. Here, the electrons coming from NADH start the sequence of oxidoreduction reactions, which drives the generation of the proton-motive force necessary for ATP synthesis. The overall architecture and the general catalytic proprieties of the FMN site are mostly well established. However, several aspects regarding the complex I flavin cofactor are still unknown. For example, the flavin binding to the N-module, the NADH-oxidizing portion of complex I, lacks a molecular description. The dissociation of FMN from the enzyme is beginning to emerge as an important regulatory mechanism of complex I activity and ROS production. Finally, how mitochondria import and metabolize FMN is still uncertain. This review summarizes the current knowledge on complex I flavin cofactor and discusses the open questions for future research.


Assuntos
Complexo I de Transporte de Elétrons , Mononucleotídeo de Flavina , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Flavinas/química , Flavinas/metabolismo , NAD/química , NAD/metabolismo , Oxirredução
19.
Antioxid Redox Signal ; 37(4-6): 290-300, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35072521

RESUMO

Background: Mitochondrial Na+ has been discovered as a new second messenger regulating inner mitochondrial membrane (IMM) fluidity and reactive oxygen species (ROS) production by complex III (CIII). However, the roles of mitochondrial Na+ in mitochondrial redox signaling go beyond what was initially expected. Significance: In this review, we systematize the current knowledge on mitochondrial Na+ homeostasis and its implications on different modes of ROS production by mitochondria. Na+ behaves as a positive modulator of forward mitochondrial ROS production either by complex III (CIII) or by decreasing antioxidant capacity of mitochondria and as a potential negative modulator of reverse electron transfer (RET) by complex I (CI). Such duality depends on the bioenergetic status, cation and redox contexts, and can either lead to potential adaptations or cell death. Future Directions: Direct Na+ interaction with phospholipids, proven in the IMM, allows us to hypothesize its potential role in the existence and function of lipid rafts in other biological membranes regarding redox homeostasis, as well as the potential role of other monovalent cations in membrane biology. Thus, we provide the reader an update on the emerging field of mitochondrial Na+ homeostasis and its relationship with mitochondrial redox signaling. Antioxid. Redox Signal. 37, 290-300.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons , Sódio , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Sódio/metabolismo
20.
Eur J Hum Genet ; 30(5): 555-559, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35079159

RESUMO

Accurate detection of pathogenic single nucleotide variants (SNVs) is a key challenge in whole exome and whole genome sequencing studies. To date, several in silico tools have been developed to predict deleterious variants from this type of data. However, these tools have limited power to detect new pathogenic variants, especially in non-coding regions. In this study, we evaluate the use of a new metric, the Shannon Entropy of Locus Variability (SELV), calculated as the Shannon entropy of the variant frequencies reported in genome-wide population studies at a given locus, as a new predictor of potentially pathogenic variants in non-coding nuclear and mitochondrial DNA and also in coding regions with a selective pressure other than that imposed by the genetic code, e.g splice-sites. For benchmarking, SELV was compared to predictors of pathogenicity in different genomic contexts. In nuclear non-coding DNA, SELV outperformed CDTS (AUCSELV = 0.97 in ROC curve and PR-AUCSELV = 0.96 in Precision-recall curve). For non-coding mitochondrial variants (AUCSELV = 0.98 in ROC curve and PR-AUCSELV = 1.00 in Precision-recall curve) SELV outperformed HmtVar. Moreover, SELV was compared against two state-of-the-art ensemble predictors of pathogenicity in splice-sites, ada-score, and rf-score, matching their overall performance both in ROC (AUCSELV = 0.95) and Precision-recall curves (PR-AUC = 0.97), with the advantage that SELV can be easily calculated for every position in the genome, as opposite to ada-score and rf-score. Therefore, we suggest that the information about the observed genetic variability in a locus reported from large scale population studies could improve the prioritization of SNVs in splice-sites and in non-coding regions.


Assuntos
Exoma , Genômica , Humanos , Mutação , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...