Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 60(25): G199-G206, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613208

RESUMO

We use the two-photon excited fluorescence method to determine the two-photon absorption (2PA) cross sections of three series of (fluorenyl benzothiazole) gold(I) complexes in the visible wavelength range from 570 to 700 nm. We compare the effect of ancillary ligand substitutions on the 2PA magnitudes and find that the ancillary ligand does not drastically affect either the magnitude or the shape of 2PA. Even so, moderate 2PA cross sections were measured that ranged from 10 to 1000 s of GM (Göppert-Mayer, =10-50cm4s/photon), making these types of complexes nonlinear optical materials for two-photon absorbing applications.

2.
Opt Express ; 29(5): 7479-7493, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726248

RESUMO

Polycrystalline materials can mediate efficient frequency up-conversion for mid-infrared light. Motivated by the need to understand the properties of the harmonic and supercontinuum radiation from such media, we utilize realistic numerical simulations to reveal its complex temporal and spatial structure. We show that the generated radiation propagates in the form of long-duration pulse trains that can be difficult to compress and that optical filamentation in high-energy pulses gives rise to fine-structured beam profiles. We identify trends concerning pulse energy, sample length, and the microstructure of the material that can inform optimization for different applications.

3.
Opt Express ; 27(26): 37940-37951, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878566

RESUMO

We utilize the conventional Z-scan technique to provide absolute measurements of third-order nonlinear refraction coefficients (n2) in the mid-wave infrared at 2 µm and 3.9 µm of common optical materials that have transparency windows spanning this regime. We study a variety of narrow band gap and wide band gap semiconductors, fluoride crystals (BaF2, CaF2, LiF, and MgF2) and optical glasses, and a series of chalcogenide glasses. The n2 is found to span on the order of ∼10-15 to ∼10-12 cm2/W for the semiconductors, ∼10-16 cm2/W for the fluoride crystals and glasses, and ∼10-14 to ∼10-13 cm2/W for the chalcogenides. The experimental results are compared to previous measurements of n2 conducted in the visible and near-infrared along with empirical and theoretical formulations.

4.
J Am Chem Soc ; 141(43): 17331-17336, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31573193

RESUMO

In this work, a new phosphonium-containing cationic polyelectrolyte (PE1) has been rationally designed and developed via a facile click-chemistry type postfunctionalization, which can form complexes with highly polarizable anionic cyanines to significantly reduce the strong and random cyanine-cyanine interactions (i.e., aggregation) in the solid-state. This material design strategy enables an efficient translation of the favorable molecular properties of cyanines into macroscopic material properties. One of such complexes exhibits a very large third-order susceptibility over 10-10 esu with low nonlinear optical loss suitable for all optical signal processing.

5.
Appl Opt ; 58(13): D28-D33, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31044817

RESUMO

We extend the recently developed dual-arm Z-scan to increase the signal-to-noise ratio (SNR) for measuring the nonlinear refraction (NLR) of thin films on thick substrates. Similar to the case of solutes in solution, the phase shift due to NLR in a thin film can often be dominated by the phase shift due to NLR in the much thicker substrate. SNR enhancement is accomplished by simultaneously scanning a bare substrate and the film plus substrate in two separate but identical Z-scan arms. The subtraction of these signals taken simultaneously effectively cancels the nonlinear signal from the substrate, leaving only the signal from the film. More importantly, the SNR is increased since the correlated noise from effects such as beam-pointing instabilities cancels. To show the versatility of the dual-arm Z-scan method, we perform measurements on semiconductor and organic thin films, some less than 100 nm thick and with thicknesses up to 4 orders of magnitude less than the substrate.

6.
Opt Express ; 27(3): 2867-2885, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732318

RESUMO

Polycrystalline ZnSe is an exciting source of broadband supercontinuum and high-harmonic generation via random quasi phase matching, exhibiting broad transparency in the mid-infrared (0.5-20 µm). In this work, the effects of wavelength, pulse power, intensity, propagation length, and crystallinity on supercontinuum and high harmonic generation are investigated experimentally using ultrafast mid-infrared pulses. Observed harmonic conversion efficiency scales linearly in propagation length, reaching as high as 36%. For the first time to our knowledge, n2 is measured for mid-infrared wavelengths in ZnSe: n2(λ=3.9 µm)=(1.2±0.3)×10-14 cm2/W. Measured n2 is applied to simulations modeling high-harmonic generation in polycrystalline ZnSe as an effective medium.

7.
Sci Rep ; 8(1): 780, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335482

RESUMO

Gold dipole nanoantennas embedded in an organic molecular film provide strong local electromagnetic fields to enhance both the nonlinear refractive index (n2) and two-photon absorption (2PA) of the molecules. An enhancement of 53× for 2PA and 140× for nonlinear refraction is observed for BDPAS (4,4'-bis(diphenylamino)stilbene) at 600 nm with only 3.7% of gold volume fraction. The complex value of the third-order susceptibility enhancement results in a sign change of n2 for the effective composite material relative to the pure BDPAS film. This complex nature of the enhancement and the tunability of the nanoantenna resonance allow for engineering the effective nonlinear response of the composite film.

8.
Inorg Chem ; 56(15): 9273-9280, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28696103

RESUMO

We report a general, photochemical method for the rapid deoxygenation of organic solvents and aqueous solutions via visible light excitation of transition metal chromophores (TMCs) in the presence of singlet oxygen scavenging substrates. Either 2,5-dimethylfuran or an amino acid (histidine or tryptophan methyl ester) was used as the substrate in conjunction with an iridium or ruthenium TMC in toluene, acetonitrile, or water. This behavior is described for solutions with chromophore concentrations that are pertinent for both luminescence and transient absorption spectroscopies. These results consistently produce TMC lifetimes comparable to those measured using traditional inert gas sparging and freeze-pump-thaw techniques. This method has the added benefits of providing long-term stability (days to months); economical preparation due to use of inexpensive, commercially available oxygen scrubbing substrates; and negligible size and weight footprints compared to traditional methods. Furthermore, attainment of dissolved [O2] < 50 µM makes this method relevant to any solution application requiring low dissolved oxygen concentration in solution, provided that the oxygenated substrate does not interfere with the intended chemical process.

9.
Appl Opt ; 56(3): B179-B183, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28157880

RESUMO

Nonlinear optical properties were characterized for a series of multinuclear iridium compounds of the form TCQ[IrIII(ppz)2]n, where n=1, 2, or 3, TCQ is tricycloquinazoline, and ppz is 1-phenylpyrazole. Transient absorption (TA) spectroscopy indicated that the triplet metal-to-ligand charge transfer excited state was formed on a subpicosecond time scale and decayed back to the ground state on a microsecond time scale, consistent with precedents in the literature. TA bands were observed for all three compounds from 475 to 900 nm, implying the potential for reverse-saturable absorption (RSA) at those wavelengths. Z-scan measurements using picosecond and nanosecond pulses were obtained at 532 nm and confirmed the presence of RSA behavior for all three compounds. The triplet excited state cross sections and the RSA figure of merit were found to decrease with increasing n:1>2∼3.

10.
Opt Express ; 24(17): 19122, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27557191

RESUMO

We provide an updated comparison of second hyperpolazability of carbon disulfide reported in [Opt. Express23(17), 22224 (2015)10.1364/OE.23.022224Optica3(6), 657 (2016)10.1364/OPTICA.3.000657].

11.
Opt Express ; 23(17): 22224-37, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26368195

RESUMO

A polarization-resolved beam deflection technique is used to separate the bound-electronic and molecular rotational components of nonlinear refractive transients of molecular gases. Coherent rotational revivals from N(2), O(2), and two isotopologues of carbon disulfide (CS(2)), are identified in gaseous mixtures. Dephasing rates, rotational and centrifugal distortion constants of each species are measured. Polarization at the magic angle allows unambiguous measurement of the bound-electronic nonlinear refractive index of air and second hyperpolarizability of CS(2). Agreement between gas and liquid phase second hyperpolarizability measurements is found using the Lorentz-Lorenz local field correction.

12.
J Am Chem Soc ; 137(30): 9635-42, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26098179

RESUMO

Organic π-conjugated materials have been widely used for a variety of nonlinear optical (NLO) applications. Molecules with negative real components Re(γ) of the third-order polarizability, which leads to nonlinear refraction in macroscopic systems, have important benefits for several NLO applications. However, few organic systems studied to date have negative Re(γ) in the long wavelength limit, and all inorganic materials show positive nonlinear refraction in this limit. Here, we introduce a new class of molecules of the form X(C6H5)4, where X = B(-), C, N(+), and P(+), that have negative Re(γ). The molecular mechanism for the NLO properties in these systems is very different from those in typical linear conjugated systems: These systems have a band of excited states involving single-electron excitations within the π-system, several of which have significant coupling to the ground state. Thus, Re(γ) cannot be understood in terms of a simplified essential-state model and must be analyzed in the context of the full sum-over-states expression. Although Re(γ) is significantly smaller than that of other commonly studied NLO chromophores, the introduction of a new molecular architecture offering the potential for a negative Re(γ) introduces new avenues of molecular design for NLO applications.

13.
Phys Chem Chem Phys ; 15(20): 7666-78, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23591769

RESUMO

Polymethine dyes (PDs) with absorption bands in the near-infrared region undergo symmetry breaking in polar solvents. To investigate how symmetry breaking affects nonlinear optical responses of PDs, an extensive and challenging experimental characterization of a cationic 2-azaazulene polymethine dye, including linear absorption, fluorescence, two-photon absorption and excited-state absorption, has been performed in two solvents with different polarity. Based on this extensive set of experimental data, a three-electronic-state model, accounting for the coupling of electronic degrees of freedom to molecular vibrations and polar solvation, has been reliably parameterized and validated for this dye, fully rationalizing optical spectra in terms of spectral position, intensities and bandshapes. In low-polarity solvents where the dye is mainly in its symmetric form, a nominally forbidden two-photon absorption band is observed, due to a vibronic activation mechanism. Inhomogeneous broadening plays a major role in polar solvents: absorption spectra represent the weighted sum of contributions from states with a variable amount of symmetry breaking, leading to a complex evolution of linear and nonlinear optical spectra with solvent polarity. In more polar solvents, the dominant role of the asymmetric form leads to the activation of two-photon absorption as a result of the symmetry lowering. The subtle interplay between the two mechanisms for two-photon absorption activation, vibronic coupling and polar solvation, can be fully accounted for within the proposed microscopic model allowing a detailed interpretation of the optical spectra of PDs.


Assuntos
Compostos Aza/química , Azulenos/química , Corantes Fluorescentes/química , Indóis/química , Fótons , Teoria Quântica , Estrutura Molecular , Solubilidade , Análise Espectral
14.
Opt Express ; 19(2): 757-63, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21263616

RESUMO

We experimentally demonstrate that the use of a weak seed pulse of energy less than 0.4% of the pump results in a spectral energy enhancement that spans over 2 octaves and a total energy enhancement of more than 3 times for supercontinua generated by millijoule level femtosecond pulses in Krypton gas. Strong four-wave mixing of the pump-seed pulse interacting in the gas is observed. The spectral irradiance generated from the seeding process is sufficiently high to use white-light continuum as an alternative to conventional tunable sources of radiation for applications such as nonlinear optical spectroscopy.


Assuntos
Lasers , Gases Nobres/química , Gases Nobres/efeitos da radiação , Desenho Assistido por Computador , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
15.
J Phys Chem A ; 114(23): 6493-501, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20486673

RESUMO

We present an experimental and theoretical investigation of the linear and nonlinear optical properties of a series of acceptor-pi-acceptor symmetrical anionic polymethine dyes with diethylamino-coumarin-dioxaborine terminal groups and different conjugation lengths. Two-photon absorption (2PA) cross sections (delta(2PA)) are enhanced with an increase of pi-conjugation length in the investigated series of dyes. 2PA spectra for all dyes consist of two well-separated bands. The first band, located within the telecommunications window, occurs upon two-photon excitation into the vibrational levels of the main S(0) --> S(1) transition, reaching a large delta(2PA) = 2200 GM (1 GM = 1 x 10(-50) cm(4) s/photon) at 1600 nm for the longest conjugated dye. The position of the second, and strongest, 2PA band for all anionic molecules corresponds to the second-excited final state, which is confirmed by quantum-chemical calculations and excitation anisotropy measurements. Large delta(2PA) values up to 17,000 GM at 1100 nm are explained by the combination of the large ground- and excited-state transition dipole moments. The three shortest dyes show good photochemical stability and surprisingly large fluorescence quantum yields of approximately 0.90, approximately 0.66, and approximately 0.18 at the red to near-IR region of approximately 640, approximately 730, and approximately 840 nm, respectively. The excited-state absorption spectra for all samples are also studied and exhibit intense bands throughout the visible wavelength region with peak cross section close to 5 x 10(-16) cm(2) with a corresponding red shift with increasing conjugation lengths.

16.
J Phys Chem A ; 113(40): 10826-32, 2009 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-19791813

RESUMO

We report the synthesis, electrochemistry, and photophysical properties of a new donor-acceptor-donor molecule in which the meso carbon atoms of two zinc porphyrin (POR) units are linked through ethynylene bridges to the 1,7-positions of a central perylene-3,4:9,10-bis(dicarboximide) (PDI). In contrast to previously studied systems incorporating POR and PDI groups, this alkyne-based derivative shows evidence of through-bond electronic coupling in the ground state; the new chromophore exhibits absorption features similar to those of its constituent parts as well as lower energy features (at wavelengths up to ca. 1000 nm), presumably arising from donor-acceptor interactions. Transient absorption measurements show that excitation at several visible and near-IR wavelengths results in the formation of an excited-state species with a lifetime of 290 ps in 1% (v/v) pyridine in toluene. The absorption spectrum of this species resembles the sum of the spectra for the chemically generated radical cation and radical anion of the chromophore. The chromophore shows moderate two-photon absorption cross sections (2000-7000 GM) at photon wavelengths close to the onset of its low-energy one-photon absorption feature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...