Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(13): 3634-3651, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37070967

RESUMO

The increasing frequency and intensity of climate extremes and complex ecosystem responses motivate the need for integrated observational studies at low latency to determine biosphere responses and carbon-climate feedbacks. Here, we develop a satellite-based rapid attribution workflow and demonstrate its use at a 1-2-month latency to attribute drivers of the carbon cycle feedbacks during the 2020-2021 Western US drought and heatwave. In the first half of 2021, concurrent negative photosynthesis anomalies and large positive column CO2 anomalies were detected with satellites. Using a simple atmospheric mass balance approach, we estimate a surface carbon efflux anomaly of 132 TgC in June 2021, a magnitude corroborated independently with a dynamic global vegetation model. Integrated satellite observations of hydrologic processes, representing the soil-plant-atmosphere continuum (SPAC), show that these surface carbon flux anomalies are largely due to substantial reductions in photosynthesis because of a spatially widespread moisture-deficit propagation through the SPAC between 2020 and 2021. A causal model indicates deep soil moisture stores partially drove photosynthesis, maintaining its values in 2020 and driving its declines throughout 2021. The causal model also suggests legacy effects may have amplified photosynthesis deficits in 2021 beyond the direct effects of environmental forcing. The integrated, observation framework presented here provides a valuable first assessment of a biosphere extreme response and an independent testbed for improving drought propagation and mechanisms in models. The rapid identification of extreme carbon anomalies and hotspots can also aid mitigation and adaptation decisions.


Assuntos
Secas , Ecossistema , Atmosfera , Ciclo do Carbono , Solo , Plantas , Carbono , Mudança Climática
2.
Sci Rep ; 13(1): 3722, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878988

RESUMO

The Soil Moisture Active Passive (SMAP) mission has dramatically benefited our knowledge of the Earth's surface processes. The SMAP mission was initially designed to provide complementary L-band measurements from a radiometer and a radar, producing geophysical measurements at a finer spatial resolution than the radiometer alone. Both instruments, sensitive to the geophysical parameters in the swath, provided independent measurements at different spatial resolutions. A few months after SMAP's launch, the radar transmitter's high-power amplifier suffered an anomaly, and the instrument could no longer return data. During recovery activities, the SMAP mission switched the radar receiver frequency facilitating the reception of Global Positioning System (GPS) signals scattered off the Earth's surface, and enabling the radar to become the first spaceborne polarimetric Global Navigation Satellite System - Reflectometry (GNSS-R) instrument. With more than 7 years of continued measurements, SMAP GNSS-R data are the most extensive existing GNSS-R dataset and the only one providing GNSS-R polarimetric measurements. We demonstrate that the SMAP polarimetric GNSS-R reflectivity, derived from Stokes parameters mathematical formulation, can enhance the radiometer data over dense vegetation areas, recovering some of the original SMAP radar capability to contribute to the science products and pioneering the first polarimetric GNSS-R mission.

3.
Nat Commun ; 14(1): 277, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650142

RESUMO

Climate change amplifies dry and hot extremes, yet the mechanism, extent, scope, and temporal scale of causal linkages between dry and hot extremes remain underexplored. Here using the concept of system dynamics, we investigate cross-scale interactions within dry-to-hot and hot-to-dry extreme event networks and quantify the magnitude, temporal-scale, and physical drivers of cascading effects (CEs) of drying-on-heating and vice-versa, across the globe. We find that locations exhibiting exceptionally strong CE (hotspots) for dry-to-hot and hot-to-dry extremes generally coincide. However, the CEs differ strongly in their timescale of interaction, hydroclimatic drivers, and sensitivity to changes in the soil-plant-atmosphere continuum and background aridity. The CE of drying-on-heating in the hotspot locations reaches its peak immediately driven by the compounding influence of vapor pressure deficit, potential evapotranspiration, and precipitation. In contrast, the CE of heating-on-drying peaks gradually dominated by concurrent changes in potential evapotranspiration, precipitation, and net-radiation with the effect of vapor pressure deficit being strongly controlled by ecosystem isohydricity and background aridity. Our results help improve our understanding of the causal linkages and the predictability of compound extremes and related impacts.


Assuntos
Secas , Ecossistema , Atmosfera , Mudança Climática , Solo
4.
Glob Chang Biol ; 29(1): 110-125, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36169920

RESUMO

Vegetation cover creates competing effects on land surface temperature: it typically cools through enhancing energy dissipation and warms via decreasing surface albedo. Global vegetation has been previously found to overall net cool land surfaces with cooling contributions from temperate and tropical vegetation and warming contributions from boreal vegetation. Recent studies suggest that dryland vegetation across the tropics strongly contributes to this global net cooling feedback. However, observation-based vegetation-temperature interaction studies have been limited in the tropics, especially in their widespread drylands. Theoretical considerations also call into question the ability of dryland vegetation to strongly cool the surface under low water availability. Here, we use satellite observations to investigate how tropical vegetation cover influences the surface energy balance. We find that while increased vegetation cover would impart net cooling feedbacks across the tropics, net vegetal cooling effects are subdued in drylands. Using observations, we determine that dryland plants have less ability to cool the surface due to their cooling pathways being reduced by aridity, overall less efficient dissipation of turbulent energy, and their tendency to strongly increase solar radiation absorption. As a result, while proportional greening across the tropics would create an overall biophysical cooling feedback, dryland tropical vegetation reduces the overall tropical surface cooling magnitude by at least 14%, instead of enhancing cooling as suggested by previous global studies.


Assuntos
Mudança Climática , Plantas , Temperatura
5.
Geophys Res Lett ; 49(7): e2021GL097697, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35865657

RESUMO

The transition of evapotranspiration between energy- and water-limitation regimes also denotes a nonlinear change in surface water and energy coupling strength. The regime transitions are primarily dominated by available moisture in the soil, although other micro-meteorological factors also play a role. Remotely sensed soil moisture is frequently used for detecting evapotranspiration regime transitions during inter storm dry downs. However, its sampling depth does not include the entire soil profile, over which water uptake is dominated by plant root distribution. We use flux tower, surface (θ s ; observations at 5 cm), and vertically integrated in situ soil moisture ( θ v ; 0-50 cm) observations to address the question: Can surface soil moisture robustly identify evapotranspiration regime transitions? Results demonstrate that θ s and θ v are hydraulically linked and have synchronized evapotranspiration regime transitions. As such, θ s and θ v capture comparable statistics of evapotranspiration regime prevalence, which supports the utility of remote-sensing θ s for large-scale land-atmosphere exchange analysis.

6.
Glob Chang Biol ; 27(23): 6005-6024, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34478589

RESUMO

Droughts in a warming climate have become more common and more extreme, making understanding forest responses to water stress increasingly pressing. Analysis of water stress in trees has long focused on water potential in xylem and leaves, which influences stomatal closure and water flow through the soil-plant-atmosphere continuum. At the same time, changes of vegetation water content (VWC) are linked to a range of tree responses, including fluxes of water and carbon, mortality, flammability, and more. Unlike water potential, which requires demanding in situ measurements, VWC can be retrieved from remote sensing measurements, particularly at microwave frequencies using radar and radiometry. Here, we highlight key frontiers through which VWC has the potential to significantly increase our understanding of forest responses to water stress. To validate remote sensing observations of VWC at landscape scale and to better relate them to data assimilation model parameters, we introduce an ecosystem-scale analog of the pressure-volume curve, the non-linear relationship between average leaf or branch water potential and water content commonly used in plant hydraulics. The sources of variability in these ecosystem-scale pressure-volume curves and their relationship to forest response to water stress are discussed. We further show to what extent diel, seasonal, and decadal dynamics of VWC reflect variations in different processes relating the tree response to water stress. VWC can also be used for inferring belowground conditions-which are difficult to impossible to observe directly. Lastly, we discuss how a dedicated geostationary spaceborne observational system for VWC, when combined with existing datasets, can capture diel and seasonal water dynamics to advance the science and applications of global forest vulnerability to future droughts.


Assuntos
Secas , Ecossistema , Florestas , Folhas de Planta , Árvores , Xilema
7.
Artigo em Inglês | MEDLINE | ID: mdl-34211622

RESUMO

Microwave radiometry has provided valuable spaceborne observations of Earth's geophysical properties for decades. The recent SMOS, Aquarius, and SMAP satellites have demonstrated the value of measurements at 1400 MHz for observing surface soil moisture, sea surface salinity, sea ice thickness, soil freeze/thaw state, and other geophysical variables. However, the information obtained is limited by penetration through the subsurface at 1400 MHz and by a reduced sensitivity to surface salinity in cold or wind-roughened waters. Recent airborne experiments have shown the potential of brightness temperature measurements from 500-1400 MHz to address these limitations by enabling sensing of soil moisture and sea ice thickness to greater depths, sensing of temperature deep within ice sheets, improved sensing of sea salinity in cold waters, and enhanced sensitivity to soil moisture under vegetation canopies. However, the absence of significant spectrum reserved for passive microwave measurements in the 500-1400 MHz band requires both an opportunistic sensing strategy and systems for reducing the impact of radio-frequency interference. Here, we summarize the potential advantages and applications of 500-1400 MHz microwave radiometry for Earth observation and review recent experiments and demonstrations of these concepts. We also describe the remaining questions and challenges to be addressed in advancing to future spaceborne operation of this technology along with recommendations for future research activities.

8.
Sci Data ; 8(1): 143, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045448

RESUMO

Long term surface soil moisture (SSM) data with stable and consistent quality are critical for global environment and climate change monitoring. L band radiometers onboard the recently launched Soil Moisture Active Passive (SMAP) Mission can provide the state-of-the-art accuracy SSM, while Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and AMSR2 series provide long term observational records of multi-frequency radiometers (C, X, and K bands). This study transfers the merits of SMAP to AMSR-E/2, and develops a global daily SSM dataset (named as NNsm) with stable and consistent quality at a 36 km resolution (2002-2019). The NNsm can reproduce the SMAP SSM accurately, with a global Root Mean Square Error (RMSE) of 0.029 m3/m3. NNsm also compares well with in situ SSM observations, and outperforms AMSR-E/2 standard SSM products from JAXA and LPRM. This global observation-driven dataset spans nearly two decades at present, and is extendable through the ongoing AMSR2 and upcoming AMSR3 missions for long-term studies of climate extremes, trends, and decadal variability.


Assuntos
Mudança Climática , Solo , Água
9.
Artigo em Inglês | MEDLINE | ID: mdl-35003512

RESUMO

Satellite soil moisture and vegetation optical depth [(VOD); related to the total vegetation water mass per unit area] are increasingly being used to study water relations in the soil-plant continuum across the globe. However, soil moisture and VOD are typically jointly estimated, where errors in the optimization approach can cause compensation between both variables and confound such studies. It is thus critical to quantify how satellite microwave measurement errors propagate into soil moisture and VOD. Such a study is especially important for VOD given limited investigations of whether VOD reflects in situ plant physiology. Furthermore, despite new approaches that constrain (or regularize) VOD dynamics to reduce soil moisture errors, there is limited study of whether regularization reduces VOD errors without obscuring true vegetation temporal dynamics. Here, we find that, across the globe, VOD is less robust to measurement error (more difficult for optimization methods to find the true solution) than soil moisture in their joint estimation. However, a moderate degree of regularization (via time-constrained VOD) reduces errors in VOD to a greater degree than soil moisture and reduces spurious soil moisture-VOD coupling. Furthermore, despite constraining VOD time dynamics, regularized VOD variations on subweekly scales are both closer to simulated true VOD time series and have global VOD post-rainfall responses with reduced error signatures compared to VOD retrievals without regularization. Ultimately, we recommend moderately regularized VOD for use in large scale studies of soil-plant water relations because it suppresses noise and spurious soil moisture-VOD coupling without removing the physical signal.

10.
Proc Natl Acad Sci U S A ; 117(30): 17635-17642, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32651272

RESUMO

Soil-salinization affects, to a different extent, more than one-third of terrestrial river basins (estimate based on the Food and Agriculture Organization Harmonized World Soil Database, 2012). Among these, many are endorheic and ephemeral systems already encompassing different degrees of aridity, land degradation, and vulnerability to climate change. The primary effect of salinization is to limit plant water uptake and evapotranspiration, thereby reducing available soil moisture and impairing soil fertility. In this, salinization resembles aridity and-similarly to aridity-may impose significant controls on hydrological partitioning and the strength of land-vegetation-atmosphere interactions at the catchment scale. However, the long-term impacts of salinization on the terrestrial water balance are still largely unquantified. Here, we introduce a modified Budyko's framework explicitly accounting for catchment-scale salinization and species-specific plant salt tolerance. The proposed framework is used to interpret the water-budget data of 237 Australian catchments-29% of which are already severely salt-affected-from the Australian Water Availability Project (AWAP). Our results provide theoretical and experimental evidence that salinization does influence the hydrological partitioning of salt-affected watersheds, imposing significant constraints on water availability and enhancing aridity. The same approach can be applied to estimate salinization level and vegetation salt tolerance at the basin scale, which would be difficult to assess through classical observational techniques. We also demonstrate that plant salt tolerance has a preeminent role in regulating the feedback of vegetation on the soil water budget of salt-affected basins.

11.
Nat Plants ; 4(12): 1026-1033, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30518832

RESUMO

The degree to which individual pulses of available water drive plant activity across diverse biomes and climates is not well understood. It has previously only been investigated in a few dryland locations. Here, plant water uptake following pulses of surface soil moisture, an indicator for the pulse-reserve hypothesis, is investigated across South America, Africa and Australia with satellite-based estimates of surface soil and canopy water content. Our findings show that this behaviour is widespread: occurring over half of the vegetated landscapes. We estimate spatially varying soil moisture thresholds at which plant water uptake ceases, noting dependence on soil texture and proximity to the wilting point. The soil type and biome-dependent soil moisture threshold and the plant soil water uptake patterns at the scale of Earth system models allow a unique opportunity to test and improve model parameterization of vegetation function under water limitation.


Assuntos
Plantas/metabolismo , Solo/química , Água/fisiologia , África , Austrália , Ecossistema , Modelos Teóricos , Estado de Hidratação do Organismo , Fenômenos Fisiológicos Vegetais , Chuva , Tecnologia de Sensoriamento Remoto , América do Sul
12.
Remote Sens Environ ; 204: 931-941, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32943797

RESUMO

Launched in January 2015, the National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) observatory was designed to provide frequent global mapping of high-resolution soil moisture and freeze-thaw state every two to three days using a radar and a radiometer operating at L-band frequencies. Despite a hardware mishap that rendered the radar inoperable shortly after launch, the radiometer continues to operate nominally, returning more than two years of science data that have helped to improve existing hydrological applications and foster new ones. Beginning in late 2016 the SMAP project launched a suite of new data products with the objective of recovering some high-resolution observation capability loss resulting from the radar malfunction. Among these new data products are the SMAP Enhanced Passive Soil Moisture Product that was released in December 2016, followed by the SMAP/Sentinel-1 Active-Passive Soil Moisture Product in April 2017. This article covers the development and assessment of the SMAP Level 2 Enhanced Passive Soil Moisture Product (L2_SM_P_E). The product distinguishes itself from the current SMAP Level 2 Passive Soil Moisture Product (L2_SM_P) in that the soil moisture retrieval is posted on a 9 km grid instead of a 36 km grid. This is made possible by first applying the Backus-Gilbert optimal interpolation technique to the antenna temperature (TA) data in the original SMAP Level 1B Brightness Temperature Product to take advantage of the overlapped radiometer footprints on orbit. The resulting interpolated TA data then go through various correction/calibration procedures to become the SMAP Level 1C Enhanced Brightness Temperature Product (LiC_TB_E). The LiC_TB_E product, posted on a 9 km grid, is then used as the primary input to the current operational SMAP baseline soil moisture retrieval algorithm to produce L2_SM_P_E as the final output. Images of the new product reveal enhanced visual features that are not apparent in the standard product. Based on in situ data from core validation sites and sparse networks representing different seasons and biomes all over the world, comparisons between L2_SM_P_E and in situ data were performed for the duration of April 1, 2015 - October 30, 2016. It was found that the performance of the enhanced 9 km L2_SM_P_E is equivalent to that of the standard 36 km L2_SM_P, attaining a retrieval uncertainty below 0.040 m3/m3 unbiased root-mean-square error (ubRMSE) and a correlation coefficient above 0.800. This assessment also affirmed that the Single Channel Algorithm using the V-polarized TB channel (SCA-V) delivered the best retrieval performance among the various algorithms implemented for L2_SM_P_E, a result similar to a previous assessment for L2_SM_P.

13.
IEEE Trans Geosci Remote Sens ; 55(7): 4098-4110, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29657350

RESUMO

A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithm's performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3/cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.

14.
IEEE Trans Geosci Remote Sens ; Volume 55(Iss 4): 1897-1914, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31708601

RESUMO

This paper evaluates the retrieval of soil moisture in the top 5-cm layer at 3-km spatial resolution using L-band dual-copolarized Soil Moisture Active-Passive (SMAP) synthetic aperture radar (SAR) data that mapped the globe every three days from mid-April to early July, 2015. Surface soil moisture retrievals using radar observations have been challenging in the past due to complicating factors of surface roughness and vegetation scattering. Here, physically based forward models of radar scattering for individual vegetation types are inverted using a time-series approach to retrieve soil moisture while correcting for the effects of static roughness and dynamic vegetation. Compared with the past studies in homogeneous field scales, this paper performs a stringent test with the satellite data in the presence of terrain slope, subpixel heterogeneity, and vegetation growth. The retrieval process also addresses any deficiencies in the forward model by removing any time-averaged bias between model and observations and by adjusting the strength of vegetation contributions. The retrievals are assessed at 14 core validation sites representing a wide range of global soil and vegetation conditions over grass, pasture, shrub, woody savanna, corn, wheat, and soybean fields. The predictions of the forward models used agree with SMAP measurements to within 0.5 dB unbiased-root-mean-square error (ubRMSE) and -0.05 dB (bias) for both copolarizations. Soil moisture retrievals have an accuracy of 0.052 m3/m3 ubRMSE, -0.015 m3/m3 bias, and a correlation of 0.50, compared to in situ measurements, thus meeting the accuracy target of 0.06 m3/m3 ubRMSE. The successful retrieval demonstrates the feasibility of a physically based time series retrieval with L-band SAR data for characterizing soil moisture over diverse conditions of soil moisture, surface roughness, and vegetation.

15.
Nat Geosci ; Volume 10(Iss 6): 410-414, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31709007

RESUMO

The terrestrial biosphere and atmosphere interact through a series of feedback loops. Variability in terrestrial vegetation growth and phenology can modulate fluxes of water and energy to the atmosphere, and thus affect the climatic conditions that in turn regulate vegetation dynamics. Here we analyze satellite observations of solar-induced fluorescence, precipitation, and radiation using a multivariate statistical technique. We find that biosphere-atmosphere feedbacks are globally widespread and regionally strong: they explain up to 30% of precipitation and surface radiation variance. Substantial biosphere-precipitation feedbacks are often found in regions that are transitional between energy and water limitation, such as semi-arid or monsoonal regions. Substantial biosphere-radiation feedbacks are often present in several moderately wet regions and in the Mediterranean, where precipitation and radiation increase vegetation growth. Enhancement of latent and sensible heat transfer from vegetation accompanies this growth, which increases boundary layer height and convection, affecting cloudiness, and consequently incident surface radiation. Enhanced evapotranspiration can increase moist convection, leading to increased precipitation. Earth system models underestimate these precipitation and radiation feedbacks mainly because they underestimate the biosphere response to radiation and water availability. We conclude that biosphere-atmosphere feedbacks cluster in specific climatic regions that help determine the net CO2 balance of the biosphere.

16.
IEEE Trans Geosci Remote Sens ; 55(5): 2959-2971, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-32753775

RESUMO

The NASA Soil Moisture Active Passive (SMAP) satellite mission was launched on January 31, 2015 to provide global mapping of high-resolution soil moisture and freeze-thaw state every 2-3 days using an L-band (active) radar and an L-band (passive) radiometer. The Level 2 radiometer-only soil moisture product (L2_SM_P) provides soil moisture estimates posted on a 36-km Earth-fixed grid using brightness temperature observations from descending passes. This paper provides the first comparison of the validated-release L2_SM_P product with soil moisture products provided by the Soil Moisture and Ocean Salinity (SMOS), Aquarius, Advanced Scatterometer (ASCAT), and Advanced Microwave Scanning Radiometer 2 (AMSR2) missions. This comparison was conducted as part of the SMAP calibration and validation efforts. SMAP and SMOS appear most similar among the five soil moisture products considered in this paper, overall exhibiting the smallest unbiased root-mean-square difference and highest correlation. Overall, SMOS tends to be slightly wetter than SMAP, excluding forests where some differences are observed. SMAP and Aquarius can only be compared for a little more than two months; they compare well, especially over low to moderately vegetated areas. SMAP and ASCAT show similar overall trends and spatial patterns with ASCAT providing wetter soil moistures than SMAP over moderate to dense vegetation. SMAP and AMSR2 largely disagree in their soil moisture trends and spatial patterns; AMSR2 exhibits an overall dry bias, while desert areas are observed to be wetter than SMAP.

17.
Water Resour Res ; 51(7): 5145-5160, 2015 07.
Artigo em Inglês | MEDLINE | ID: mdl-26937055

RESUMO

Basin hydrologic response is a function of soil moisture distributional featuresAn information-based dimensionless index of hydrologic complexity is appliedThe complexity index characterizes soil moisture distributional features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...