Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 12: 654565, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868022

RESUMO

Insects are unable to synthesize cholesterol and depend on the presence of sterols in the diet for cell membrane composition and hormone production. Thus, cholesterol absorption, transport, and metabolism are potential targets for vector and pest control strategies. Here, we investigate the dietary cholesterol absorption and tissue distribution in the kissing bug Rhodnius prolixus using radiolabeled cholesterol. Both the anterior and posterior midguts absorbed cholesterol from the ingested blood, although the anterior midgut absorbed more. We also observed esterified cholesterol labeling in the epithelium, indicating that midgut cells can metabolize and store cholesterol. Only a small amount of labeled cholesterol was found in the hemolymph, where it was mainly in the free form and associated with lipophorin (Lp). The fat body transiently accumulated cholesterol, showing a labeled cholesterol peak on the fifth day after the blood meal. The ovaries also incorporated cholesterol, but cumulatively. The insects did not absorb almost half of the ingested labeled cholesterol, and radioactivity was present in the feces. After injection of 3H-cholesterol-labeled Lp into females, a half-life of 5.5 ± 0.7 h in the hemolymph was determined. Both the fat body and ovaries incorporated Lp-associated cholesterol, which was inhibited at low temperature, indicating the participation of active cholesterol transport. These results help describe an unexplored part of R. prolixus lipid metabolism.

2.
Arch Insect Biochem Physiol ; 82(3): 129-40, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23361613

RESUMO

Lipophorin is a major lipoprotein that transports lipids in insects. In Rhodnius prolixus, it transports lipids from midgut and fat body to the oocytes. Analysis by thin-layer chromatography and densitometry identified the major lipid classes present in the lipoprotein as diacylglycerol, hydrocarbons, cholesterol, and phospholipids (PLs), mainly phosphatidylethanolamine and phosphatidylcholine. The effect of preincubation at elevated temperatures on lipophorin capacity to deliver or receive lipids was studied. Transfer of PLs to the ovaries was only inhibited after preincubation of lipophorin at temperatures higher than 55 °C. When it was pretreated at 75 °C, maximal inhibition of phospholipid transfer was observed after 3-min heating and no difference was observed after longer times, up to 60 min. The same activity was also obtained when lipophorin was heated for 20 min at 75 °C at protein concentrations from 0.2 to 10 mg/ml. After preincubation at 55 °C, the same rate of lipophorin loading with PLs at the fat body was still present, and 30% of the activity was observed at 75 °C. The effect of temperature on lipophorin was also analyzed by turbidity and intrinsic fluorescence determinations. Turbidity of a lipophorin solution started to increase after preincubations at temperatures higher than 65 °C. Emission fluorescence spectra were obtained for lipophorin, and the spectral area decreased after preincubations at 85 °C or above. These data indicated no difference in the spectral center of mass at any tested temperature. Altogether, these results demonstrate that lipophorin from R. prolixus is very resistant to high temperatures.


Assuntos
Lipoproteínas/química , Rhodnius/química , Animais , Corpo Adiposo/metabolismo , Feminino , Temperatura Alta , Metabolismo dos Lipídeos , Lipoproteínas/metabolismo , Ovário/metabolismo , Rhodnius/metabolismo
3.
PLoS Negl Trop Dis ; 4(11): e873, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-21072234

RESUMO

BACKGROUND: Sand fly saliva contains molecules that modify the host's hemostasis and immune responses. Nevertheless, the role played by this saliva in the induction of key elements of inflammatory responses, such as lipid bodies (LB, also known as lipid droplets) and eicosanoids, has been poorly investigated. LBs are cytoplasmic organelles involved in arachidonic acid metabolism that form eicosanoids in response to inflammatory stimuli. In this study, we assessed the role of salivary gland sonicate (SGS) from Lutzomyia (L.) longipalpis, a Leishmania infantum chagasi vector, in the induction of LBs and eicosanoid production by macrophages in vitro and ex vivo. METHODOLOGY/PRINCIPAL FINDINGS: Different doses of L. longipalpis SGS were injected into peritoneal cavities of C57BL/6 mice. SGS induced increased macrophage and neutrophil recruitment into the peritoneal cavity at different time points. Sand fly saliva enhanced PGE2 and LTB4 production by harvested peritoneal leukocytes after ex vivo stimulation with a calcium ionophore. At three and six hours post-injection, L. longipalpis SGS induced more intense LB staining in macrophages, but not in neutrophils, compared with mice injected with saline. Moreover, macrophages harvested by peritoneal lavage and stimulated with SGS in vitro presented a dose- and time-dependent increase in LB numbers, which was correlated with increased PGE2 production. Furthermore, COX-2 and PGE-synthase co-localized within the LBs induced by L. longipalpis saliva. PGE2 production by macrophages induced by SGS was abrogated by treatment with NS-398, a COX-2 inhibitor. Strikingly, SGS triggered ERK-1/2 and PKC-α phosphorylation, and blockage of the ERK-1/2 and PKC-α pathways inhibited the SGS effect on PGE2 production by macrophages. CONCLUSION: In sum, our results show that L. longipalpis saliva induces lipid body formation and PGE2 production by macrophages ex vivo and in vitro via the ERK-1/2 and PKC-α signaling pathways. This study provides new insights regarding the pharmacological mechanisms whereby L. longipalpis saliva influences the early steps of the host's inflammatory response.


Assuntos
Dinoprostona/imunologia , Insetos Vetores/imunologia , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , Organelas/imunologia , Psychodidae/imunologia , Saliva/imunologia , Animais , Células Cultivadas , Dinoprostona/metabolismo , Feminino , Humanos , Leishmania infantum/fisiologia , Leishmaniose Visceral/parasitologia , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organelas/metabolismo , Glândulas Salivares/imunologia
4.
Arch Insect Biochem Physiol ; 61(1): 1-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16380977

RESUMO

In this study, we describe the ability of intact fat body of an insect, Rhodnius prolixus, to hydrolyze extracellular ATP. In these fat bodies, the ATP hydrolysis was low in the absence of any divalent metal, and was stimulated by MgCl(2). Both activities (in the absence or presence of MgCl(2)) were linear with time for at least 30 min. In order to confirm the observed nucleotidase activities as ecto-nucleotidases, we used an impermeant inhibitor, DIDS (4, 4'-diisothiocyanostylbene 2'-2'-disulfonic acid). This reagent inhibited both nucleotidase activities and its inhibitory effect was suppressed by ATP. Both ecto-nucleotidase activities were insensitive to inhibitors of other ATPase and phosphatase activities, such as oligomycin, sodium azide, bafilomycin, ouabain, vanadate, molybdate, sodium fluoride, levamizole, tartrate, p-NPP, sodium phosphate, and suramin. Concanavalin A, activator of some ecto-ATPases, was able to stimulate the Mg(2+)-independent nucleotidase activity, but not the Mg(2+)-dependent one. The Mg(2+)-independent nucleotidase activity was enhanced with increases in the pH in the range between 6.4-8.0, but the Mg(2+)-dependent nucleotidase activity was not affected. Besides MgCl(2) , the ecto-ATPase activity was also stimulated by CaCl(2),() MnCl(2), and SrCl(2), but not by ZnCl(2). ATP, ADP, and AMP were the best substrates for the Mg(2+)-dependent ecto-nucleotidase activity, and CTP, GTP, and UTP produced very low reaction rates. However, the Mg(2+)-independent nucleotidase activity recognized all these nucleotides producing similar reaction rates, but GTP was a less efficient substrate. The possible role of the two ecto-nucleotidase activities present on the cell surface of fat body of Rhodnius prolixus, which are distinguished by their substrate specificity and their response to Mg(2+), is discussed.


Assuntos
Corpo Adiposo/enzimologia , Nucleotidases/metabolismo , Rhodnius/enzimologia , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Adenosina Trifosfatases/efeitos dos fármacos , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Corpo Adiposo/metabolismo , Feminino , Concentração de Íons de Hidrogênio , Hidrólise , Cloreto de Magnésio/farmacologia , Nucleotidases/antagonistas & inibidores , Nucleotidases/química , Nucleotídeos/metabolismo , Rhodnius/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...