Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 132(1): 10-29, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36475698

RESUMO

BACKGROUND: Organ fibrosis due to excessive production of extracellular matrix by resident fibroblasts is estimated to contribute to >45% of deaths in the Western world, including those due to cardiovascular diseases such as heart failure. Here, we screened for small molecule inhibitors with a common ability to suppress activation of fibroblasts across organ systems. METHODS: High-content imaging of cultured cardiac, pulmonary, and renal fibroblasts was used to identify nontoxic compounds that blocked induction of markers of activation in response to the profibrotic stimulus, transforming growth factor-ß1. SW033291, which inhibits the eicosanoid-degrading enzyme, 15-hydroxyprostaglandin dehydrogenase, was chosen for follow-up studies with cultured adult rat ventricular fibroblasts and human cardiac fibroblasts (CF), and for evaluation in mouse models of cardiac fibrosis and diastolic dysfunction. Additional mechanistic studies were performed with CFs treated with exogenous eicosanoids. RESULTS: Nine compounds, including SW033291, shared a common ability to suppress transforming growth factor-ß1-mediated activation of cardiac, pulmonary, and renal fibroblasts. SW033291 dose-dependently inhibited transforming growth factor-ß1-induced expression of activation markers (eg, α-smooth muscle actin and periostin) in adult rat ventricular fibroblasts and normal human CFs, and reduced contractile capacity of the cells. Remarkably, the 15-hydroxyprostaglandin dehydrogenase inhibitor also reversed constitutive activation of fibroblasts obtained from explanted hearts from patients with heart failure. SW033291 blocked cardiac fibrosis induced by angiotensin II infusion and ameliorated diastolic dysfunction in an alternative model of systemic hypertension driven by combined uninephrectomy and deoxycorticosterone acetate administration. Mechanistically, SW033291-mediated stimulation of extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase signaling was required for the compound to block CF activation. Of the 12 exogenous eicosanoids that were tested, only 12(S)-hydroxyeicosatetraenoic acid, which signals through the G protein-coupled receptor, GPR31, recapitulated the suppressive effects of SW033291 on CF activation. CONCLUSIONS: Inhibition of degradation of eicosanoids, arachidonic acid-derived fatty acids that signal through G protein-coupled receptors, is a potential therapeutic strategy for suppression of pathological organ fibrosis. In the heart, we propose that 15-hydroxyprostaglandin dehydrogenase inhibition triggers CF-derived autocrine/paracrine signaling by eicosanoids, including 12(S)-hydroxyeicosatetraenoic acid, to stimulate extracellular signal-regulated kinase 1/2 and block conversion of fibroblasts into activated cells that secrete excessive amounts of extracellular matrix and contribute to heart failure pathogenesis.


Assuntos
Insuficiência Cardíaca , Camundongos , Ratos , Humanos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miocárdio/metabolismo , Insuficiência Cardíaca/metabolismo , Fibroblastos/metabolismo , Fibrose , Células Cultivadas
2.
Arterioscler Thromb Vasc Biol ; 40(8): 1854-1869, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32580634

RESUMO

OBJECTIVE: Our recent work demonstrates that PTEN (phosphatase and tensin homolog) is an important regulator of smooth muscle cell (SMC) phenotype. SMC-specific PTEN deletion promotes spontaneous vascular remodeling and PTEN loss correlates with increased atherosclerotic lesion severity in human coronary arteries. In mice, PTEN overexpression reduces plaque area and preserves SMC contractile protein expression in atherosclerosis and blunts Ang II (angiotensin II)-induced pathological vascular remodeling, suggesting that pharmacological PTEN upregulation could be a novel therapeutic approach to treat vascular disease. Approach and Results: To identify novel PTEN activators, we conducted a high-throughput screen using a fluorescence based PTEN promoter-reporter assay. After screening ≈3400 compounds, 11 hit compounds were chosen based on level of activity and mechanism of action. Following in vitro confirmation, we focused on 5-azacytidine, a DNMT1 (DNA methyltransferase-1) inhibitor, for further analysis. In addition to PTEN upregulation, 5-azacytidine treatment increased expression of genes associated with a differentiated SMC phenotype. 5-Azacytidine treatment also maintained contractile gene expression and reduced inflammatory cytokine expression after PDGF (platelet-derived growth factor) stimulation, suggesting 5-azacytidine blocks PDGF-induced SMC de-differentiation. However, these protective effects were lost in PTEN-deficient SMCs. These findings were confirmed in vivo using carotid ligation in SMC-specific PTEN knockout mice treated with 5-azacytidine. In wild type controls, 5-azacytidine reduced neointimal formation and inflammation while maintaining contractile protein expression. In contrast, 5-azacytidine was ineffective in PTEN knockout mice, indicating that the protective effects of 5-azacytidine are mediated through SMC PTEN upregulation. CONCLUSIONS: Our data indicates 5-azacytidine upregulates PTEN expression in SMCs, promoting maintenance of SMC differentiation and reducing pathological vascular remodeling in a PTEN-dependent manner.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Ensaios de Triagem em Larga Escala/métodos , PTEN Fosfo-Hidrolase/fisiologia , Remodelação Vascular/efeitos dos fármacos , Animais , Azacitidina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , PTEN Fosfo-Hidrolase/genética , Fator de Crescimento Derivado de Plaquetas/farmacologia , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...