Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 15(11): 18113-18124, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34734700

RESUMO

Charge doping to Mott insulators is critical to realize high-temperature superconductivity, quantum spin liquid state, and Majorana fermion, which would contribute to quantum computation. Mott insulators also have a great potential for optoelectronic applications; however, they showed insufficient photoresponse in previous reports. To enhance the photoresponse of Mott insulators, charge doping is a promising strategy since it leads to effective modification of electronic structure near the Fermi level. Intercalation, which is the ion insertion into the van der Waals gap of layered materials, is an effective charge-doping method without defect generation. Herein, we showed significant enhancement of optoelectronic properties of a layered Mott insulator, α-RuCl3, through electron doping by organic cation intercalation. The electron-doping results in substantial electronic structure change, leading to the bandgap shrinkage from 1.2 eV to 0.7 eV. Due to localized excessive electrons in RuCl3, distinct density of states is generated in the valence band, leading to the optical absorption change rather than metallic transition even in substantial doping concentration. The stable near-infrared photodetector using electronic modulated RuCl3 showed 50 times higher photoresponsivity and 3 times faster response time compared to those of pristine RuCl3, which contributes to overcoming the disadvantage of a Mott insulator as a promising optoelectronic device and expanding the material libraries.

2.
Phys Rev Lett ; 127(25): 256801, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35029440

RESUMO

We generate paramagnetic centers on a heavily boron-doped Si(111) surface by using a scanning tunneling microscope and show that they mediate the spin-dependent recombination of the bound holes of the boron acceptor via direct visualization. This recombination is the intraband process and is significantly affected by the spin-orbit coupling effect. We also demonstrate that such a paramagnetic center with a boron acceptor at its neighbor site can be produced with atomic precision, which makes it a promising candidate for implementing position-controlled impurity qubits with an electrical readout mechanism in silicon.

3.
Nanoscale ; 12(38): 19604-19608, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32996967

RESUMO

Kekulé distortion in graphene is a subject of extensive theoretical studies due to its non-trivial material properties. Yet, experimental observation of its formation mechanism and electronic structures is still elusive. Here, we used scanning tunneling microscopy to visualize two different phases of the Kekulé distortion in graphene along with experimental evidence that local strain is responsible for the formation of such distortions. In addition, we directly measured the electronic structures of the two phases of the Kekulé distortion in graphene revealing that one opens an energy gap whereas the other maintains a linear density profile. These are consistent with the calculated band structures of the two phases of the Kekulé distortion, respectively, providing a direct verification of the theoretical predictions.

5.
Sci Rep ; 6: 30646, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27476475

RESUMO

An enormous amount of research activities has been devoted to developing new types of non-volatile memory devices as the potential replacements of current flash memory devices. Theoretical device modeling was performed to demonstrate that a huge change of tunnel resistance in an Edge Metal-Insulator-Metal (EMIM) junction of metal crossbar structure can be induced by the modulation of electric fringe field, associated with the polarization reversal of an underlying ferroelectric layer. It is demonstrated that single three-terminal EMIM/Ferroelectric structure could form an active memory cell without any additional selection devices. This new structure can open up a way of fabricating all-thin-film-based, high-density, high-speed, and low-power non-volatile memory devices that are stackable to realize 3D memory architecture.

6.
Rev Sci Instrum ; 86(9): 093707, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26429448

RESUMO

We report on the design of a compact low temperature scanning tunneling microscope (STM) having in-situ sample preparation capability. The in-situ sample preparation chamber was designed to be compact allowing quick transfer of samples to the STM stage, which is ideal for preparing temperature sensitive samples such as ultra-thin metal films on semiconductor substrates. Conventional spring suspensions on the STM head often cause mechanical issues. To address this problem, we developed a simple vibration damper consisting of welded metal bellows and rubber pads. In addition, we developed a novel technique to ensure an ultra-high-vacuum (UHV) seal between the copper and stainless steel, which provides excellent reliability for cryostats operating in UHV. The performance of the STM was tested from 2 K to 77 K by using epitaxial thin Pb films on Si. Very high mechanical stability was achieved with clear atomic resolution even when using cryostats operating at 77 K. At 2 K, a clean superconducting gap was observed, and the spectrum was easily fit using the BCS density of states with negligible broadening.

7.
Sci Rep ; 5: 9615, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25905989

RESUMO

The crystallinity of epitaxial graphene (EG) grown on a Hexagonal-SiC substrate is found to be enhanced greatly by capping the substrate with a molybdenum plate (Mo-plate) during vacuum annealing. The crystallinity enhancement of EG layer grown with Mo-plate capping is confirmed by the significant change of measured Raman spectra, compared to the spectra for no capping. Mo-plate capping is considered to induce heat accumulation on SiC surface by thermal radiation mirroring and raise Si partial pressure near surface by confining the sublimated Si atoms between SiC substrate and Mo-plate, which would be the essential contributors of crystallinity enhancement.

8.
Nano Lett ; 15(1): 398-402, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25558914

RESUMO

We show that each surface atom of heavily boron-doped, (111)-oriented silicon with a √3 × âˆš3 reconstruction has electrically switchable two charge states due to the strong electron-lattice coupling at this surface. The structural and electronic properties of the two charge states as well as their energetics are uncovered by employing scanning tunneling microscopy measurements and density functional theory calculations, which reveals that one of the two is a two-electron bound state or surface bipolaron. We also execute the single-atom bit operations on individual surface atoms by controlling their charge states while demonstrating implementation of the atomic scale memory at a silicon surface with an unprecedented recording density.

9.
ACS Nano ; 8(6): 5765-73, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24830340

RESUMO

Low-temperature scanning tunneling microscopy measurements and first-principles calculations are employed to characterize edge structures observed for graphene nanoislands grown on the Co(0001) surface. Images of these nanostructures reveal straight well-ordered edges with zigzag orientation, which are characterized by a distinct peak at low bias in tunneling spectra. Density functional theory based calculations are used to discriminate between candidate edge structures. Several zigzag-oriented edge structures have lower formation energy than armchair-oriented edges. Of these, the lowest formation energy configurations are a zigzag and a Klein edge structure, each with the final carbon atom over the hollow site in the Co(0001) surface. In the absence of hydrogen, the interaction with the Co(0001) substrate plays a key role in stabilizing these edge structures and determines their local conformation and electronic properties. The calculated electronic properties for the low-energy edge structures are consistent with the measured scanning tunneling images.

10.
Sci Rep ; 3: 3562, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24356395

RESUMO

The focusing performance of a multilayer Laue lens (MLL) with 43.4 µm aperture, 4 nm finest zone width and 4.2 mm focal length at 12 keV was characterized with X-rays using ptychography method. The reconstructed probe shows a full-width-at-half-maximum (FWHM) peak size of 11.2 nm. The obtained X-ray wavefront shows excellent agreement with the dynamical calculations, exhibiting aberrations less than 0.3 wave period, which ensures the MLL capable of producing a diffraction-limited focus while offering a sufficient working distance. This achievement opens up opportunities of incorporating a variety of in-situ experiments into ultra high-resolution X-ray microscopy studies.

11.
Phys Rev Lett ; 111(26): 265701, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24483804

RESUMO

Controlling the self-assembly of surface-adsorbed molecules into nanostructures requires understanding physical mechanisms that act across multiple length and time scales. By combining scanning tunneling microscopy with hierarchical ab initio and statistical mechanical modeling of 1,4-substituted benzenediamine (BDA) molecules adsorbed on a gold (111) surface, we demonstrate that apparently simple nanostructures are selected by a subtle competition of thermodynamics and dynamics. Of the collection of possible BDA nanostructures mechanically stabilized by hydrogen bonding, the interplay of intermolecular forces, surface modulation, and assembly dynamics select at low temperature a particular subset: low free energy oriented linear chains of monomers and high free energy branched chains.

12.
J Am Chem Soc ; 134(46): 18979-85, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23092372

RESUMO

The reduced surface of a natural Hematite single crystal α-Fe(2)O(3)(0001) sample has multiple surface domains with different terminations, Fe(2)O(3)(0001), FeO(111), and Fe(3)O(4)(111). The adsorption of water on this surface was investigated via Scanning Tunneling Microscopy (STM) and first-principle theoretical simulations. Water species are observed only on the Fe-terminated Fe(3)O(4)(111) surface at temperatures up to 235 K. Between 235 and 245 K we observed a change in the surface species from intact water molecules and hydroxyl groups bound to the surface to only hydroxyl groups atop the surface terminating Fe(III) cations. This indicates a low energy barrier for water dissociation on the surface of Fe(3)O(4) that is supported by our theoretical computations. Our first principles simulations confirm the identity of the surface species proposed from the STM images, finding that the most stable state of a water molecule is the dissociated one (OH + H), with OH atop surface terminating Fe(III) sites and H atop under-coordinated oxygen sites. Attempts to simulate reaction of the surface OH with coadsorbed CO fail because the only binding sites for CO are the surface Fe(III) atoms, which are blocked by the much more strongly bound OH. In order to promote this reaction we simulated a surface decorated with gold atoms. The Au adatoms are found to cap the under-coordinated oxygen sites and dosed CO is found to bind to the Au adatom. This newly created binding site for CO not only allows for coexistence of CO and OH on the surface of Fe(3)O(4) but also provides colocation between the two species. These two factors are likely promoters of catalytic activity on Au/Fe(3)O(4)(111) surfaces.

13.
ACS Nano ; 5(8): 6102-8, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21726071

RESUMO

We describe scanning tunneling microscopy and X-ray photoelectron spectroscopy studies of graphene films produced by sonication-assisted dispersion. Defects in these samples are not randomly distributed, and the graphene films exhibit a "patchwork" structure where unperturbed graphene areas are adjacent to heavily functionalized ones. Adjacent graphene layers are likely in poor mechanical contact due to adventitious species trapped between the carbon sheets of the sample.


Assuntos
Grafite/química , Microscopia de Tunelamento , Nanotecnologia/métodos , Espectroscopia Fotoeletrônica , Sonicação/métodos
14.
Nano Lett ; 9(8): 2844-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19630380

RESUMO

We have grown well-ordered graphene adlayers on the lattice-matched Co(0001) surface. Low-temperature scanning tunneling microscopy measurements demonstrate an on-top registry of the carbon atoms with respect to the Co(0001) surface. The tunneling conductance spectrum shows that the electronic structure is substantially altered from that of isolated graphene, implying a strong coupling between graphene and cobalt states. Calculations using density functional theory confirm that structures with on-top registry have the lowest energy and provide clear evidence for strong electronic coupling between the graphene pi-states and Co d-states at the interface.

15.
Nano Lett ; 8(7): 1872-8, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18563944

RESUMO

The demand for better understanding of the mechanism of soot formation is driven by the negative environmental and health impact brought about by the burning of fossil fuels. While soot particles accumulate most of their mass from surface reactions, the mechanism for surface growth has so far been characterized primarily by measurements of the kinetics. Here we provide atomic-scale scanning tunneling microscope images of carbon growth by chemistry similar to that of importance in soot formation. At a temperature of 625 K, exposure of the surface of highly ordered pyrolytic graphite to 1 Langmuir of acetylene leads to the formation of both graphitic and amorphous carbonaceous material at the edges of nanoscale pits. Given the similarity of the electronic structure at these graphite defect sites to that of soot material growing in flames at higher temperatures, the present studies shed light on the mechanism for soot growth. These experiments also suggest that healing of defect sites in graphene nanostructures, which are of considerable interest as novel electronic devices, should be possible at modest surface temperatures by exposure of defected graphene to unsaturated hydrocarbons.


Assuntos
Grafite/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Microscopia de Tunelamento , Estrutura Molecular
16.
Phys Rev Lett ; 97(20): 206102, 2006 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-17155696

RESUMO

By using scanning tunneling spectroscopy to probe a silver thin film that contains both periodic and quasiperiodic modulation, and by using Fourier analysis, we unravel the influences of individual Fourier components of the scattering potential (periodic versus quasiperiodic) on the electronic structure of a one-dimensional quasiperiodically modulated thin Ag film. Along the periodically modulated direction, a Bragg reflection-induced energy gap is observed in k space. On the other hand, the exotic E vs k spectrum with many minigaps was observed along the quasiperiodic direction.

17.
Phys Rev Lett ; 96(2): 027005, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16486621

RESUMO

By using a low temperature scanning tunneling microscope we have probed the superconducting energy gap of epitaxially grown Pb films as a function of the layer thickness in an ultrathin regime (5-18 ML). The layer-dependent energy gap and transition temperature (Tc) show persistent quantum oscillations down to the lowest thickness without any sign of suppression. Moreover, by comparison with the quantum-well states measured above Tc and the theoretical calculations, we found that the Tc oscillation correlates directly with the density of states oscillation at E(F) . The oscillation is manifested by the phase matching of the Fermi wavelength and the layer thickness, resulting in a bilayer periodicity modulated by a longer wavelength quantum beat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...