Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 4226, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127620

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Sci Rep ; 8(1): 11961, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097665

RESUMO

An interesting van der Waals material, Ta2NiSe5 has been known one of strong excitonic insulator candidates since it has very small or zero bandgap and can have a strong exciton binding energy because of its quasi-one-dimensional crystal structure. Here we investigate a single crystal Ta2NiSe5 using optical spectroscopy. Ta2NiSe5 has quasi-one-dimensional chains along the a-axis. We have obtained anisotropic optical properties of a single crystal Ta2NiSe5 along the a- and c-axes. The measured a- and c-axis optical conductivities exhibit large anisotropic electronic and phononic properties. With regard to the a-axis optical conductivity, a sharp peak near 3050 cm-1 at 9 K, with a well-defined optical gap ([Formula: see text] 1800 cm-1) and a strong temperature-dependence, is observed. With an increase in temperature, this peak broadens and the optical energy gap closes around ∼325 K ([Formula: see text]). The spectral weight redistribution with respect to the frequency and temperature indicates that the normalized optical energy gap ([Formula: see text]) is [Formula: see text]. The temperature-dependent superfluid plasma frequency of the excitonic condensation in Ta2NiSe5 has been determined from measured optical data. Our study may pave new avenues in the future research on excitonic insulators.

3.
ACS Nano ; 10(9): 8888-94, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27526274

RESUMO

Atomically thin nanosheets, as recently realized using van der Waals layered materials, offer a versatile platform for studying the stability and tunability of the correlated electron phases in the reduced dimension. Here, we investigate a thickness-dependent excitonic insulating (EI) phase on a layered ternary chalcogenide Ta2NiSe5. Using Raman spectroscopy, scanning tunneling spectroscopy, and in-plane transport measurements, we found no significant changes in crystalline and electronic structures as well as disorder strength in ultrathin Ta2NiSe5 crystals with a thickness down to five layers. The transition temperature, Tc, of ultrathin Ta2NiSe5 is reduced from its bulk value by ΔTc/Tc(bulk) ≈ -9%, which strongly contrasts the case of 1T-TiSe2, another excitonic insulator candidate, showing an increase of Tc by ΔTc/Tc(bulk) ≈ +30%. This difference is attributed to the dominance of interband Coulomb interaction over electron-phonon interaction and its zero-ordering wave vector due to the direct band gap structure of Ta2NiSe5. The out-of-plane correlating length of the EI phase is estimated to have monolayer thickness, suggesting that the EI phase in Ta2NiSe5 is highly layer-confined and in the strong coupling limit.

4.
Sci Rep ; 6: 22228, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26916618

RESUMO

The band width control through external stress has been demonstrated as a useful knob to modulate metal-insulator transition (MIT) in RNiO3 as a prototype correlated materials. In particular, lattice mismatch strain using different substrates have been widely utilized to investigate the effect of strain on transition temperature so far but the results were inconsistent in the previous literatures. Here, we demonstrate dynamic modulation of MIT based on electric field-controlled pure strain in high-quality NdNiO3 (NNO) thin films utilizing converse-piezoelectric effect of (001)-cut Pb(Mg(1/3)Nb(2/3)O3-(PbTiO3) (PMN-PT) single crystal substrates. Despite the difficulty in the NNO growth on rough PMN-PT substrates, the structural quality of NNO thin films has been significantly improved by inserting SrTiO3 (STO) buffer layers. Interestingly, the MIT temperature in NNO is downward shifted by ~3.3 K in response of 0.25% in-plane compressive strain, which indicates less effective TMI modulation of field-induced strain than substrate-induced strain. This study provides not only scientific insights on band-width control of correlated materials using pure strain but also potentials for energy-efficient electronic devices.

5.
Phys Rev Lett ; 113(15): 156602, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25375728

RESUMO

We report the valley-selective interlayer conduction of SrMnBi(2) under in-plane magnetic fields. The c-axis resistivity of SrMnBi(2) shows clear angular magnetoresistance oscillations indicating coherent interlayer conduction. Strong fourfold variation of the coherent peak in the c-axis resistivity reveals that the contribution of each Dirac valley is significantly modulated by the in-plane field orientation. This originates from anisotropic Dirac Fermi surfaces with strong disparity in the momentum-dependent interlayer coupling. Furthermore, we found a signature of broken valley symmetry at high magnetic fields. These findings demonstrate that a quasi-two-dimensional anisotropic Dirac system can host a valley-polarized interlayer current through magnetic valley control.

6.
Phys Rev Lett ; 113(26): 266406, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25615364

RESUMO

We report a de Haas-van Alphen (dHvA) oscillation study on IrTe2 single crystals showing complex dimer formations. By comparing the angle dependence of dHvA oscillations with band structure calculations, we show distinct Fermi surface reconstruction induced by a 1/5-type and a 1/8-type dimerizations. This verifies that an intriguing quasi-two-dimensional conducting plane across the layers is induced by dimerization in both cases. A phase transition to the 1/8 phase with higher dimer density reveals that local instabilities associated with intra- and interdimer couplings are the main driving force for complex dimer formations in IrTe2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...