Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(3): e0206774, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30870411

RESUMO

The CDC biofilm reactor is a robust culture system with high reproducibility in which biofilms can be grown for a wide variety of analyses. Multiple material types are available as growth substrates, yet data from biofilms grown on biologically relevant materials is scarce, particularly for antibiotic efficacy against differentially supported biofilms. In this study, CDC reactor holders were modified to allow growth of biofilms on collagen, a biologically relevant substrate. Susceptibility to multiple antibiotics was compared between biofilms of varying species grown on collagen versus standard polycarbonate coupons. Data indicated that in 13/18 instances, biofilms on polycarbonate were more susceptible to antibiotics than those on collagen, suggesting that when grown on a complex substrate, biofilms may be more tolerant to antibiotics. These outcomes may influence the translatability of antibiotic susceptibility profiles that have been collected for biofilms on hard plastic materials. Data may also help to advance information on antibiotic susceptibility testing of biofilms grown on biologically relevant materials for future in vitro and in vivo applications.


Assuntos
Antibacterianos/farmacologia , Bactérias/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Colágeno/metabolismo , Cimento de Policarboxilato/metabolismo , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Colágeno/química , Cimento de Policarboxilato/química
2.
J Biomed Mater Res A ; 105(9): 2632-2639, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28512783

RESUMO

Orthodontic retention has been proposed as a life-long commitment for patients who desire to maintain straight teeth. However, the presence of foreign material increases risk of bacterial colonization and caries formation, of which Streptococcus mutans is a key contributor. Multiple studies have assessed the ability of silver to be added to base plate material and resist attachment of S. mutans. However, it does not appear that long-term washout in connection with biofilm growth under physiologically relevant conditions has been taken into consideration. In this study, silver was added to base plate material and exposed to short- or long-term washout periods. Materials were then assessed for their ability to resist biofilm formation of S. mutans using a drip flow reactor that modeled the human oral environment. Data indicated that silver was able to resist biofilm formation following short-term washout, but long-term washout periods resulted in a lack of ability to resist biofilm formation. These data will be important for future development of base plate materials to achieve long-term antimicrobial efficacy to reduce risk of caries formation and benefit patients in the long term. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2632-2639, 2017.


Assuntos
Reatores Biológicos/microbiologia , Polimetil Metacrilato/farmacologia , Prata/farmacologia , Streptococcus mutans/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Imageamento Tridimensional , Testes de Sensibilidade Microbiana , Streptococcus mutans/ultraestrutura , Propriedades de Superfície
3.
Anat Rec (Hoboken) ; 296(5): 736-44, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23494918

RESUMO

To gain an understanding of the vertebral cortical endplate and factors that may affect the ability to achieve skeletal attachment to intervertebral implants and fusion, this study aimed to characterize the hypermineralized tissue on the cortical endplate of the vertebral body on a commonly used animal model. Skeletally mature sheep were injected with tetracycline prior to euthanasia and the C2-C3, T5-T6, and L2-L3 spinal motion segments were excised and prepared. Vertebral tissues were imaged using backscatter electron (BSE) imaging, histology, and tetracycline labeling was used to assess bone remodeling within different tissue layers. It was determined that the hypermineralized tissue layer was calcified fibrocartilage (CFC). No tetracycline labels were identified in the CFC layer, in contrast to single and double labels that were present in the underlying bone, indicating the CFC present on the cortical endplate was not being actively remodeled. The average thickness of the CFC layer was 146.3 ± 70.53 µm in the cervical region, 98.2 ± 40.29 µm in the thoracic region, and 150.89 ± 69.25 µm in the lumbar region. This difference in thickness may be attributed to the regional biomechanical properties of the spine. Results from this investigation indicate the presence of a nonremodeling tissue on the cortical endplate of the vertebral body in sheep spines, which attaches the intervertebral disc to the vertebrae. This tissue, if not removed, would likely prevent successful bony attachment to an intervertebral device in spinal fusion studies and total disc replacement surgeries.


Assuntos
Fibrocartilagem/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Animais , Fibrocartilagem/fisiologia , Modelos Anatômicos , Ovinos , Coluna Vertebral/fisiologia , Coluna Vertebral/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...