Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(45): 50913-50922, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36326441

RESUMO

Visible light-mediated photoredox catalysis has emerged to be a fascinating approach for the activation of CO2 and its subsequent fixation into valuable chemicals utilizing renewable and inexhaustible solar energy. Although great progress has been made in CO2 photoreduction, visible light-assisted organic synthesis using CO2 as a reactive substrate is rarely explored. Herein, we report an efficient, facile, and economically viable photoredox-mediated approach for the synthesis of important ß-thioacids via carboxylation of olefins with CO2 and thiols over a porous functionalized metal-organic framework (MOF), Fe-MIL-101-NH2, as a photocatalyst under ambient conditions. This multicomponent reaction offers wide substrate scope, mild reaction conditions, easy work-up, cost-effective and reusable photocatalysts, and higher product selectivity. Computational studies suggested that CO2 interacts with the thiophenol-styrene adduct to facilitate the synthesis of ß-thioacids in almost quantitative yields.

2.
ChemSusChem ; 14(22): 5057-5064, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34532998

RESUMO

Hydrogen evolution reaction (HER) by electrochemical water splitting is one of the most active areas of energy research, yet the benchmark electrocatalysts used for this reaction are based on expensive noble metals. This is a major bottleneck for their large-scale operation. Thus, development of efficient metal-free electrocatalysts is of paramount importance for sustainable and economical production of the renewable fuel hydrogen by water splitting. Covalent organic frameworks (COFs) show much promise for this application by virtue of their architectural stability, nanoporosity, abundant active sites located periodically throughout the framework, and high electronic conductivity due to extended π-delocalization. This study concerns a new COF material, C6 -TRZ-TFP, which is synthesized by solvothermal polycondensation of 2-hydroxybenzene-1,3,5-tricarbaldehyde (TFP) and 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tris[(1,1'-biphenyl)-4-amine]. C6 -TRZ-TFP displayed excellent HER activity in electrochemical water splitting, with a very low overpotential of 200 mV and specific activity of 0.2831 mA cm-2 together with high retention of catalytic activity after a long duration of electrocatalysis in 0.5 m aqueous H2 SO4 . Density functional theory calculations suggest that the electron-deficient carbon sites near the π electron-donating nitrogen atoms are more active towards HER than those near the electron-withdrawing nitrogen and oxygen atoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA