Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668805

RESUMO

Recent years have seen increasing scientific interest in whether neuron counts can act as correlates of diverse biological phenomena. Lately, Herculano-Houzel (2023) argued that fossil endocasts and comparative neurological data from extant sauropsids allow to reconstruct telencephalic neuron counts in Mesozoic dinosaurs and pterosaurs, which might act as proxies for behaviors and life history traits in these animals. According to this analysis, large theropods such as Tyrannosaurus rex were long-lived, exceptionally intelligent animals equipped with "macaque- or baboon-like cognition", whereas sauropods and most ornithischian dinosaurs would have displayed significantly smaller brains and an ectothermic physiology. Besides challenging established views on Mesozoic dinosaur biology, these claims raise questions on whether neuron count estimates could benefit research on fossil animals in general. Here, we address these findings by revisiting Herculano-Houzel's (2023) work, identifying several crucial shortcomings regarding analysis and interpretation. We present revised estimates of encephalization and telencephalic neuron counts in dinosaurs, which we derive from phylogenetically informed modeling and an amended dataset of endocranial measurements. For large-bodied theropods in particular, we recover significantly lower neuron counts than previously proposed. Furthermore, we review the suitability of neurological variables such as neuron numbers and relative brain size to predict cognitive complexity, metabolic rate and life history traits in dinosaurs, coming to the conclusion that they are flawed proxies for these biological phenomena. Instead of relying on such neurological estimates when reconstructing Mesozoic dinosaur biology, we argue that integrative studies are needed to approach this complex subject.

2.
PeerJ ; 11: e15353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151298

RESUMO

Thalattosuchian crocodylomorphs were a diverse clade that lived from the Early Jurassic to the Early Cretaceous. The subclade Metriorhynchoidea underwent a remarkable transition, evolving from semi-aquatic ambush predators into fully aquatic forms living in the open oceans. Thalattosuchians share a peculiar palatal morphology with semi-aquatic and aquatic fossil cetaceans: paired anteroposteriorly aligned grooves along the palatal surface of the bony secondary palate. In extant cetaceans, these grooves are continuous with the greater palatine artery foramina, arteries that supply their oral thermoregulatory structures. Herein, we investigate the origins of thalattosuchian palatal grooves by examining CT scans of six thalattosuchian species (one teleosauroid, two early-diverging metriorhynchoids and three metriorhynchids), and CT scans of eleven extant crocodylian species. All thalattosuchians had paired osseous canals, enclosed by the palatines, that connect the nasal cavity to the oral cavity. These osseous canals open into the oral cavity via foramina at the posterior terminus of the palatal grooves. Extant crocodylians lack both the external grooves and the internal canals. We posit that in thalattosuchians these novel palatal canals transmitted hypertrophied medial nasal vessels (artery and vein), creating a novel heat exchange pathway connecting the palatal vascular plexus to the endocranial region. Given the general hypertrophy of thalattosuchian cephalic vasculature, and their increased blood flow and volume, thalattosuchians would have required a more extensive suite of thermoregulatory pathways to maintain stable temperatures for their neurosensory tissues.


Assuntos
Evolução Biológica , Crânio , Animais , Filogenia , Crânio/diagnóstico por imagem , Regulação da Temperatura Corporal , Artérias , Cetáceos
3.
PeerJ ; 9: e11253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986990

RESUMO

Dyrosaurids were highly specialized, largely marine, relatives of living crocodylians, and one of the few archosaur lineages to survive the K-Pg extinction. Dyrosaurids lived during the Cretaceous to the Eocene and represent a unique combination of morphology and ecology not seen in living crocodylians. Little is known about their endocranial anatomy, leaving many questions about their neurosensory adaptations unaddressed. Recently, µCT (micro-computed tomography) scans were made of a well-preserved skull of Rhabdognathus, a Paleocene dyrosaurid from Mali. This marks the first time the braincase and neurosensory features of a dyrosaurid have been examined using CT. We focus our attention to three specific internal structures: the cranial endocast; the inner ear; and the paratympanic sinuses. The cranial endocast of Rhabdognathus revealed novel features including a unique conformation of its paratympanic system, a prominent dorsal venous system that communicates with the external skull table, extremely enlarged tympanic vestibules that meet at the midline of the endocranium, a prominent spherical cerebrum, and elongate olfactory tracts accounting for half the total endocast length. The bizarre laterally facing lateral Eustachian foramen of dyrosaurids is now understood to be a complex fossa including both a ventrally directed lateral Eustachian foramen and a laterally directed foramen for the basioccipital diverticulum. A novel median pterygopharyngeal canal was discovered connecting the pharynx to the adductor chamber. These revelations require a reinterpretation of the associated external foramina visible on the posterior of the skull in dyrosaurids and potentially their close relatives the pholidosaurids. The olfactory tract terminates in an enlarged olfactory region possessing complex bony projections-a unique morphology perhaps serving to increase surface area for olfaction. The inner ear of Rhabdognathus exhibits characteristics seen in both Pelagosaurus and Gavialis. The vestibule is spherical, as in Gavialis, but is significantly expanded. The semicircular canals are enlarged but pyramidal in shape as in the thalattosuchian Pelagosaurus. The proportion of the cochlear length to total endosseous labyrinth height is roughly 0.5 in Rhabdognathus implying that the hearing capabilities resemble that of thalattosuchians. A suite of expanded sense organs (e.g., bony olfactory lamina; hypertrophied vestibule of the inner ear), and the clear expansion of the cerebrum to a more symmetrical and spherical shape suggest that dyrosaurids possess neuroanatomical modifications facilitating an agile predatory near-shore ecology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...