Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(2): 71, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38225445

RESUMO

Because of the hydrophobic nature of the membrane lipid bilayer, the majority of the hydrophilic solutes require special transportation mechanisms for passing through the cell membrane. Integral membrane transport proteins (MTPs), which belong to the Major Intrinsic Protein Family, facilitate the transport of these solutes across cell membranes. MTPs including aquaporins and carrier proteins are transmembrane proteins spanning across the cell membrane. The easy handling of microorganisms enabled the discovery of a remarkable number of transport proteins specific to different substances. It has been realized that these transporters have very important roles in the survival of microorganisms, their pathogenesis, and antimicrobial resistance. Astonishing features related to the solute specificity of these proteins have led to the acceleration of the research on the discovery of their properties and the development of innovative products in which these unique properties are used or imitated. Studies on microbial MTPs range from the discovery and characterization of a novel transporter protein to the mining and screening of them in a large transporter library for particular functions, from simulations and modeling of specific transporters to the preparation of biomimetic synthetic materials for different purposes such as biosensors or filtration membranes. This review presents recent discoveries on microbial membrane transport proteins and focuses especially on formate nitrite transport proteins and aquaporins, and advances in their biotechnological applications.


Assuntos
Aquaporinas , Proteínas de Membrana Transportadoras , Proteínas de Membrana Transportadoras/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte/metabolismo , Transporte Biológico
2.
Adv Biosyst ; 1(7): e1700053, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32646175

RESUMO

Membrane protein and membrane protein-mimic functionalized materials are rapidly gaining interest across a wide range of applications, including drug screening, DNA sequencing, drug delivery, sensors, water desalination, and bioelectronics. In these applications, material performance is highly dependent on activity-per-protein and protein packing density in bilayer and bilayer-like structures collectively known as biomimetic membranes. However, a clear understanding of, and accurate tools to study these properties of biomimetic membranes does not exist. This paper presents methods to evaluate membrane protein compatibility with biomimetic membrane materials. The methods utilized provide average single protein activity, and for the first time, provide experimentally quantifiable measures of the chemical and physical compatibility between proteins (and their mimics) and membrane materials. Water transport proteins, rhodopsins, and artificial water channels are reconstituted into the full range of current biomimetic membrane matrices to evaluate the proposed platform. Compatibility measurement results show that both biological and artificial water channels tested largely preserve their single protein water transport rates in biomimetic membranes, while their reconstitution density is variable, leading to different overall membrane permeabilities. It is also shown that membrane protein insertion efficiency inversely correlates with both chemical and physical hydrophobicity mismatch between membrane protein and the membrane matrix.

3.
Proc Natl Acad Sci U S A ; 112(32): 9810-5, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216964

RESUMO

Bioinspired artificial water channels aim to combine the high permeability and selectivity of biological aquaporin (AQP) water channels with chemical stability. Here, we carefully characterized a class of artificial water channels, peptide-appended pillar[5]arenes (PAPs). The average single-channel osmotic water permeability for PAPs is 1.0(± 0.3) × 10(-14) cm(3)/s or 3.5(± 1.0) × 10(8) water molecules per s, which is in the range of AQPs (3.4 ∼ 40.3 × 10(8) water molecules per s) and their current synthetic analogs, carbon nanotubes (CNTs, 9.0 × 10(8) water molecules per s). This permeability is an order of magnitude higher than first-generation artificial water channels (20 to ∼ 10(7) water molecules per s). Furthermore, within lipid bilayers, PAP channels can self-assemble into 2D arrays. Relevant to permeable membrane design, the pore density of PAP channel arrays (∼ 2.6 × 10(5) pores per µm(2)) is two orders of magnitude higher than that of CNT membranes (0.1 ∼ 2.5 × 10(3) pores per µm(2)). PAP channels thus combine the advantages of biological channels and CNTs and improve upon them through their relatively simple synthesis, chemical stability, and propensity to form arrays.


Assuntos
Canais Iônicos/química , Água/química , Aquaporinas/química , Íons , Modelos Moleculares , Simulação de Dinâmica Molecular , Nanotubos de Carbono , Peptídeos/química , Permeabilidade , Lipossomas Unilamelares/química
4.
Protein Expr Purif ; 115: 109-17, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26008117

RESUMO

Membrane protein overexpression is often hindered by toxic effects on the expression host, limiting achievable volumetric productivity. Moreover, protein structure and function may be impaired due to inclusion body formation and proteolytic degradation. To address these challenges, we employed the photosynthetic bacterium, Rhodobacter sphaeroides for expression of challenging membrane proteins including human aquaporin 9 (hAQP9), human tight junction protein occludin (Occ), Escherichia coli toxin peptide GhoT, cellulose synthase enzyme complex (BcsAB) of R. sphaeroides and cytochrome-cy (Cyt-cy) from Rhodobacter capsulatus. Titers of 47 mg/L for Cyt-cy, 7.5 mg/L for Occ, 1.5 mg/L for BcsAB and 0.5 mg/L for hAQP9 were achieved from affinity purification. While purification of GhoT was not successful, transformants displayed a distinct growth phenotype that correlated with GhoT expression. We also evaluated the functionality of these proteins by performing water transport studies for hAQP9, peroxidase activity for cytochrome-cy, and in vitro cellulose synthesis activity assay for BcsAB. While previous studies with Rhodobacter have utilized oxygen-limited semi-aerobic growth for membrane protein expression, substantial titer improvements are achieved as a result of a 3-fold increase in biomass yield using the anaerobic photoheterotrophic growth regime, which utilizes the strong native puc promoter. This versatile platform is shown to enable recovery of a wide variety of difficult-to-express membrane proteins in functional form.


Assuntos
Biotecnologia/métodos , Proteínas de Membrana/metabolismo , Proteínas Recombinantes/metabolismo , Rhodobacter sphaeroides/genética , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Rhodobacter sphaeroides/metabolismo
5.
PLoS One ; 9(1): e86830, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24497982

RESUMO

Aquaporins are highly selective water channel proteins integrated into plasma membranes of single cell organisms; plant roots and stromae; eye lenses, renal and red blood cells in vertebrates. To date, only a few microbial aquaporins have been characterized and their physiological importance is not well understood. Here we report on the cloning, expression and characterization of a novel aquaporin, RsAqpZ, from a purple photosynthetic bacterium, Rhodobacter sphaeroides ATCC 17023. The protein was expressed homologously at a high yield (∼20 mg/L culture) under anaerobic photoheterotrophic growth conditions. Stopped-flow light scattering experiments demonstrated its high water permeability (0.17±0.05 cm/s) and low energy of activation for water transport (2.93±0.60 kcal/mol) in reconstituted proteoliposomes at a protein to lipid ratio (w/w) of 0.04. We developed a fluorescence correlation spectroscopy based technique and utilized a fluorescent protein fusion of RsAqpZ, to estimate the single channel water permeability of RsAqpZ as 1.24 (±0.41) x 10(-12) cm(3)/s or 4.17 (±1.38)×10(10) H2O molecules/s, which is among the highest single channel permeability reported for aquaporins. Towards application to water purification technologies, we also demonstrated functional incorporation of RsAqpZ in amphiphilic block copolymer membranes.


Assuntos
Aquaporinas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Recombinantes/metabolismo , Rhodobacter sphaeroides/metabolismo , Algoritmos , Sequência de Aminoácidos , Aquaporinas/classificação , Aquaporinas/genética , Proteínas de Bactérias/genética , Transporte Biológico , Western Blotting , Permeabilidade da Membrana Celular , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Lipossomos/metabolismo , Lipossomos/ultraestrutura , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Eletrônica , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Rhodobacter sphaeroides/genética , Homologia de Sequência de Aminoácidos , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA