Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 291(32): 16753-65, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27325703

RESUMO

Autophagy is biological mechanism allowing recycling of long-lived proteins, abnormal protein aggregates, and damaged organelles under cellular stress conditions. Following sequestration in double- or multimembrane autophagic vesicles, the cargo is delivered to lysosomes for degradation. ATG5 is a key component of an E3-like ATG12-ATG5-ATG16 protein complex that catalyzes conjugation of the MAP1LC3 protein to lipids, thus controlling autophagic vesicle formation and expansion. Accumulating data indicate that ATG5 is a convergence point for autophagy regulation. Here, we describe the scaffold protein RACK1 (receptor activated C-kinase 1, GNB2L1) as a novel ATG5 interactor and an autophagy protein. Using several independent techniques, we showed that RACK1 interacted with ATG5. Importantly, classical autophagy inducers (starvation or mammalian target of rapamycin blockage) stimulated RACK1-ATG5 interaction. Knockdown of RACK1 or prevention of its binding to ATG5 using mutagenesis blocked autophagy activation. Therefore, the scaffold protein RACK1 is a new ATG5-interacting protein and an important and novel component of the autophagy pathways.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Camundongos , Proteínas de Neoplasias/genética , Ligação Proteica , Receptores de Quinase C Ativada , Receptores de Superfície Celular/genética
2.
Exp Biol Med (Maywood) ; 238(11): 1242-50, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24047796

RESUMO

Hydrodynamic cavitation is a physical phenomenon characterized by vaporization and bubble formation in liquids under low local pressures, and their implosion following their release to a higher pressure environment. Collapse of the bubbles releases high energy and may cause damage to exposed surfaces. We recently designed a set-up to exploit the destructive nature of hydrodynamic cavitation for biomedical purposes. We have previously shown that hydrodynamic cavitation could kill leukemia cells and erode kidney stones. In this study, we analyzed the effects of cavitation on prostate cells and benign prostatic hyperplasia (BPH) tissue. We showed that hydrodynamic cavitation could kill prostate cells in a pressure- and time-dependent manner. Cavitation did not lead to programmed cell death, i.e. classical apoptosis or autophagy activation. Following the application of cavitation, we observed no prominent DNA damage and cells did not arrest in the cell cycle. Hence, we concluded that cavitation forces directly damaged the cells, leading to their pulverization. Upon application to BPH tissues from patients, cavitation could lead to a significant level of tissue destruction. Therefore similar to ultrasonic cavitation, we propose that hydrodynamic cavitation has the potential to be exploited and developed as an approach for the ablation of aberrant pathological tissues, including BPH.


Assuntos
Técnicas de Ablação , Hiperplasia Prostática/patologia , Neoplasias da Próstata/patologia , Autofagia , Linhagem Celular Tumoral , Fragmentação do DNA , Humanos , Hidrodinâmica , Masculino , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...