Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 182: 106126, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37086756

RESUMO

Intraneuronal aggregates of the microtubule binding protein Tau are a hallmark of different neurodegenerative diseases including Alzheimer's disease (AD). In these aggregates, Tau is modified by posttranslational modifications such as phosphorylation as well as by proteolytic cleavage. Here we identify a novel Tau cleavage site at aspartate 65 (D65) that is specific for caspase-2. In addition, we show that the previously described cleavage site at D421 is also efficiently processed by caspase-2, and both sites are cleaved in human brain samples. Caspase-2-generated Tau fragments show increased aggregation potential in vitro, but do not accumulate in vivo after AAV-mediated overexpression in mouse hippocampus. Interestingly, we observe that steady-state protein levels of caspase-2 generated Tau fragments are low in our in vivo model despite strong RNA expression, suggesting efficient clearance. Consistent with this hypothesis, we find that caspase-2 cleavage significantly improves the recognition of Tau by the ubiquitin E3 ligase CHIP, leading to increased ubiquitination and faster degradation of Tau fragments. Taken together our data thus suggest that CHIP-induced ubiquitination is of particular importance for the clearance of caspase-2 generated Tau fragments in vitro and in vivo.


Assuntos
Caspase 2 , Proteínas tau , Humanos , Masculino , Feminino , Animais , Camundongos , Modelos Animais de Doenças , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo , Caspase 2/metabolismo , Encéfalo/metabolismo , Imunoprecipitação da Cromatina , Ubiquitinação
2.
STAR Protoc ; 4(2): 102164, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36933222

RESUMO

Developing an in vitro platform to study neuron-oligodendrocyte interaction, particularly myelination, is essential to understand aberrant myelination in neuropsychiatric and neurodegenerative diseases. Here, we provide a controlled, direct co-culture protocol for human induced-pluripotent-stem-cell (hiPSC)-derived neurons and oligodendrocytes on three-dimensional (3D) nanomatrix plates. We describe steps to differentiate hiPSCs into cortical neurons and oligodendrocyte lineage cells on 3D nanofibers. We then detail the detachment and isolation of the oligodendrocyte lineage cells, followed by neuron-oligodendrocyte co-culture in this 3D microenvironment.

3.
Neurobiol Aging ; 109: 64-77, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655982

RESUMO

In Alzheimer disease, Tau pathology is thought to propagate from cell to cell throughout interconnected brain areas. However, the forms of Tau released into the brain interstitial fluid (ISF) in vivo during the development of Tauopathy and their pathological relevance remain unclear. Combining in vivo microdialysis and biochemical analysis, we find that in Tau transgenic mice, human Tau (hTau) present in brain ISF is truncated and comprises at least 10 distinct fragments spanning the entire Tau protein. The fragmentation pattern is similar across different Tau transgenic models, pathological stages and brain areas. ISF hTau concentration decreases during Tauopathy progression, while its phosphorylation increases. ISF from mice with established Tauopathy induces Tau aggregation in HEK293-Tau biosensor cells. Notably, immunodepletion of ISF phosphorylated Tau, but not Tau fragments, significantly reduces its ability to seed Tau aggregation and only a fraction of Tau, separated by ultracentrifugation, is seeding-competent. These results indicate that ISF seeding competence is driven by a small subset of Tau, which potentially contribute to the propagation of Tau pathology.


Assuntos
Encéfalo/metabolismo , Líquido Extracelular/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos Transgênicos , Microdiálise , Fragmentos de Peptídeos/metabolismo , Fosforilação , Agregação Patológica de Proteínas/metabolismo
4.
Mol Neurodegener ; 16(1): 46, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215303

RESUMO

BACKGROUND: Human tauopathies including Alzheimer's disease (AD) are characterized by alterations in the post-translational modification (PTM) pattern of Tau, which parallel the formation of insoluble Tau aggregates, neuronal dysfunction and degeneration. While PTMs on aggregated Tau have been studied in detail, much less is known about the modification patterns of soluble Tau. Furthermore, PTMs other than phosphorylation have only come into focus recently and are still understudied. Soluble Tau species are likely responsible for the spreading of pathology during disease progression and are currently being investigated as targets for immunotherapies. A better understanding of their biochemical properties is thus of high importance. METHODS: We used a mass spectrometry approach to characterize Tau PTMs on a detergent-soluble fraction of human AD and control brain tissue, which led to the discovery of novel lysine methylation events. We developed specific antibodies against Tau methylated at these sites and biochemically characterized methylated Tau species in extracts from human brain, the rTg4510 mouse model and in hiPSC-derived neurons. RESULTS: Our study demonstrates that methylated Tau levels increase with Tau pathology stage in human AD samples as well as in a mouse model of Tauopathy. Methylated Tau is enriched in soluble brain extracts and is not associated with hyperphosphorylated, high molecular weight Tau species. We also show that in hiPSC-derived neurons and mouse brain, methylated Tau preferentially localizes to the cell soma and nuclear fractions and is absent from neurites. Knock down and inhibitor studies supported by proteomics data led to the identification of SETD7 as a novel lysine methyltransferase for Tau. SETD7 specifically methylates Tau at K132, an event that facilitates subsequent methylation at K130. CONCLUSIONS: Our findings indicate that methylated Tau has a specific somatic and nuclear localization, suggesting that the methylation of soluble Tau species may provide a signal for their translocation to different subcellular compartments. Since the mislocalization and depletion of Tau from axons is associated with tauopathies, our findings may shed light onto this disease-associated phenomenon.


Assuntos
Doença de Alzheimer/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas tau/metabolismo , Animais , Humanos , Lisina/metabolismo , Metilação , Camundongos , Camundongos Transgênicos
5.
Cell Rep ; 31(12): 107780, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32579942

RESUMO

Tuberous sclerosis complex (TSC) is a neurogenetic disorder that leads to elevated mechanistic targeting of rapamycin complex 1 (mTORC1) activity. Cilia can be affected by mTORC1 signaling, and ciliary deficits are associated with neurodevelopmental disorders. Here, we examine whether neuronal cilia are affected in TSC. We show that cortical tubers from TSC patients and mutant mouse brains have fewer cilia. Using high-content image-based assays, we demonstrate that mTORC1 activity inversely correlates with ciliation in TSC1/2-deficient neurons. To investigate the mechanistic relationship between mTORC1 and cilia, we perform a phenotypic screen for mTORC1 inhibitors with TSC1/2-deficient neurons. We identify inhibitors of the heat shock protein 90 (Hsp90) that suppress mTORC1 through regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling. Pharmacological inhibition of Hsp90 rescues ciliation through downregulation of Hsp27. Our study uncovers the heat-shock machinery as a druggable signaling node to restore mTORC1 activity and cilia due to loss of TSC1/2, and it provides broadly applicable platforms for studying TSC-related neuronal dysfunction.


Assuntos
Cílios/metabolismo , Resposta ao Choque Térmico , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neurônios/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Envelhecimento/metabolismo , Animais , Benzoquinonas/farmacologia , Encéfalo/patologia , Regulação para Baixo/efeitos dos fármacos , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Humanos , Lactamas Macrocíclicas/farmacologia , Camundongos Knockout , Neurônios/efeitos dos fármacos , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Sirolimo/farmacologia , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
6.
Biosens Bioelectron ; 159: 112129, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32364931

RESUMO

Tau protein in cerebrospinal fluid (CSF) is a central and relevant biomarker of Alzheimer's disease (AD) that correlates with the severity of dementia. Unfortunately, so far, direct label-free detection of tau remains a challenge. Here, we present a transistor-based biosensor that detects the net charge of tau protein directly under physiological conditions. To achieve this, readily available whole anti-tau IgG antibodies are co-immobilized on the sensor surface with polyethylene glycol (PEG) molecules of different molecular weight. We show that by increasing the PEG size from 10 kDa to 20 kDa, the electrical response upon binding of tau improves significantly. These results support recent theoretical work that predicted larger PEGs to form a thicker surface layer with a higher detectable analyte charge. With 20 kDa PEG, we demonstrate label-free tau detection in a wide concentration range with detection limits <1 pM in 150 mM buffer and cell culture media, as well as < 10 pM in artificial CSF. This purely electrical method allows fast and simple tau detection within 30 min without sample processing, washing steps, or labeled detection antibodies. By exchanging the capture antibody, the platform is also amenable to different biomarkers and may enable future diagnostic tools for AD and other diseases.


Assuntos
Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Transistores Eletrônicos , Proteínas tau , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Biomarcadores , Humanos , Imunoensaio/normas , Sensibilidade e Especificidade
7.
Cell Physiol Biochem ; 54(2): 252-270, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32176842

RESUMO

BACKGROUND/AIMS: Store-operated Ca2+ entry (SOCE) through plasma membrane Ca2+ channel Orai1 is essential for many cellular processes. SOCE, activated by ER Ca2+ store-depletion, relies on the gating function of STIM1 Orai1-activating region SOAR of the ER-anchored Ca2+-sensing protein STIM1. Electrophysiologically, SOCE is characterized as Ca2+ release-activated Ca2+ current (ICRAC). A major regulatory mechanism that prevents deleterious Ca2+ overload is the slow Ca2+-dependent inactivation (SCDI) of ICRAC. Several studies have suggested a role of Ca2+/calmodulin (Ca2+/CaM) in triggering SCDI. However, a direct contribution of STIM1 in regulating Ca2+/CaM-mediated SCDI of ICRAC is as yet unclear. METHODS: The Ca2+/CaM binding to STIM1 was tested by pulling down recombinant GFP-tagged human STIM1 C-terminal fragments on CaM sepharose beads. STIM1 was knocked out by CRISPR/Cas9 technique in HEK293 cells stably overexpressing human Orai1. Store-operated Ca2+ influx was measured using Fluorometric Imaging Plate Reader and whole-cell patch clamp in cells transfected with STIM1 CaM binding mutants. The involvement of Ca2+/CaM in SCDI was investigated by including recombinant human CaM in patch pipette in electrophysiology. RESULTS: Here we identified residues Leu374/Val375 (H1) and Leu390/Phe391 (H2) within SOAR that serve as hydrophobic anchor sites for Ca2+/CaM binding. The bifunctional H2 site is critical for both Orai1 activation and Ca2+/CaM binding. Single residue mutations of Phe391 to less hydrophobic residues significantly diminished SOCE and ICRAC, independent of Ca2+/CaM. Hence, the role of H2 residues in Ca2+/CaM-mediated SCDI cannot be precisely evaluated. In contrast, the H1 site controls exclusively Ca2+/CaM binding and subsequently SCDI, but not Orai1 activation. V375A but not V375W substitution eliminated SCDI of ICRAC caused by Ca2+/CaM, proving a direct role of STIM1 in coordinating SCDI. CONCLUSION: Taken together, we propose a mechanistic model, wherein binding of Ca2+/CaM to STIM1 hydrophobic anchor residues, H1 and H2, triggers SCDI by disrupting the functional interaction between STIM1 and Orai1. Our findings reveal how STIM1, Orai1, and Ca2+/CaM are functionally coordinated to control ICRAC.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/fisiologia , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/fisiologia , Sistemas CRISPR-Cas , Canais de Cálcio/genética , Sinalização do Cálcio , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/metabolismo , Modelos Químicos , Modelos Moleculares , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/química , Proteína ORAI1/genética , Ligação Proteica , Domínios Proteicos , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Regulação para Cima
8.
Acta Neuropathol Commun ; 7(1): 192, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796124

RESUMO

Tau is a microtubule-binding protein that can receive various post-translational modifications (PTMs) including phosphorylation, methylation, acetylation, glycosylation, nitration, sumoylation and truncation. Hyperphosphorylation of tau is linked to its aggregation and the formation of neurofibrillary tangles (NFTs), which are a hallmark of Alzheimer's disease (AD). While more than 70 phosphorylation sites have been detected previously on NFT tau, studies of oligomeric and detergent-soluble tau in human brains during the early stages of AD are lacking. Here we apply a comprehensive electrochemiluminescence ELISA assay to analyze twenty-five different PTM sites as well as tau oligomerization in control and sporadic AD brain. The samples were classified as Braak stages 0-I, II or III-IV, corresponding to the progression of microscopically detectable tau pathology throughout different brain regions. We found that soluble tau multimers are strongly increased at Braak stages III-IV in all brain regions under investigation, including the temporal cortex, which does not contain NFTs or misfolded oligomers at this stage of pathology. We additionally identified five phosphorylation sites that are specifically and consistently increased across the entorhinal cortex, hippocampus and temporal cortex in the same donors. Three of these sites correlate with tau multimerization in all three brain regions, but do not overlap with the epitopes of phospho-sensitive antibodies commonly used for the immunohistochemical detection of NFTs. Our results thus suggest that soluble multimers are characterized by a small set of specific phosphorylation events that differ from those dominating in mature NFTs. These findings shed light on early PTM changes of tau during AD pathogenesis in human brains.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/patologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Fosforilação/fisiologia , Proteínas tau/genética
9.
Neurobiol Dis ; 130: 104518, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31229689

RESUMO

Tau cleavage by different proteolytic enzymes generates short, aggregation-prone fragments that have been implicated in the pathogenesis of Alzheimer's disease (AD). Asparagine endopeptidase (AEP) activity in particular has been associated with tau dysfunction and aggregation, and the activity of the protease is increased in both aging and AD. Using a mass spectrometry approach, we identified a novel tau cleavage site at N167 and confirmed its processing by AEP. In combination with the previously known site at N368, we show that AEP cleavage yields a tau fragment that is present in both control and AD brains at similar levels. AEP is a lysosomal enzyme, and our data suggest that it is expressed in microglia rather than in neurons. Accordingly, we observe tau cleavage at N167 and N368 after endocytotic uptake into microglia, but not neurons. However, tau168-368 does not accumulate in microglia and we thus conclude that the fragment is part of a proteolytic cascade leading to tau degradation. While we confirm previous studies showing increased overall AEP activity in AD brains, our data suggests that AEP-mediated cleavage of tau is a physiological event occurring during microglial degradation of the secreted neuronal protein. As a consequence, we caution against preventing AEP-mediated tau cleavage as a therapeutic approach in AD.


Assuntos
Encéfalo/metabolismo , Cisteína Endopeptidases/metabolismo , Microglia/fisiologia , Proteínas tau/metabolismo , Células HEK293 , Humanos , Espectrometria de Massas , Neurônios/fisiologia , Proteólise
10.
Stem Cell Res ; 34: 101351, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30611016

RESUMO

Alzheimer's Disease (AD) is the major cause of dementia in the elderly, and cortical neurons differentiated from patient-derived induced pluripotent stem cells (iPSCs) can recapitulate disease phenotypes such as tau phosphorylation or amyloid beta (Aß) deposition. Here we describe the generation of an iPSC cohort consisting of 2 sporadic AD cases and 3 controls, derived from dermal fibroblasts. All lines were karyotypically normal, showed expression of stem cell markers and efficiently differentiated into cells of all three germ layers.


Assuntos
Doença de Alzheimer/patologia , Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/patologia , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...