Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Chem Biol ; 79: 102440, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422870

RESUMO

Rewiring the transsulfuration pathway is recognized as a rapid adaptive metabolic response to environmental conditions in cancer cells to support their increased cysteine demand and to produce Reactive Sulfur Species (RSS) including hydrogen sulfide (H2S) and cysteine persulfide. This can directly (via RSS) or indirectly (by supplying Cys) trigger chemical or enzyme catalyzed persulfidation on critical protein cysteine residues to protect them from oxidative damage and to orchestrate protein functions, and thereby contribute to cancer cell plasticity. In this review key aspects of persulfide-mediated biological processes are highlighted and critically discussed in relation to cancer cell survival, bioenergetics, proliferation as well as in tumor angiogenesis, adaptation to hypoxia and oxidative stress, and regulation of epithelial to mesenchymal transition.


Assuntos
Cisteína/análogos & derivados , Dissulfetos , Transição Epitelial-Mesenquimal , Sobrevivência Celular , Enxofre , Biologia
2.
Redox Biol ; 57: 102505, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36279629

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest of all cancer types with a constant rise in global incidence. Therefore, better understanding of PDAC biology, in order to design more efficient diagnostic and treatment modalities, is a priority. Here we found that the expression levels of cystathionine ß-synthase (CBS), a transsulfuration enzyme, is markedly elevated in metastatic PDAC cells compared to cell lines isolated from non-metastatic primary tumors. On human immunohistochemical samples from PDAC patients we also found higher CBS staining in cancerous ductal cells compared to in non-tumor tissue, which was further elevated in the lymph node metastasis of the same patients. In mice, orthotopically injected CBS-silenced T3M4 cells induced fewer liver metastases compared to control cells indicating important roles for CBS in PDAC cancer cell invasion and malignant transformation. Wound healing and colony formation assays in cell culture confirmed that CBS-deficient metastatic T3M4 and non-metastatic BxPC3 primary tumor cells migrate slower and have impaired anchorage-independent growth capacities compared to control T3M4 cells. CBS silencing in T3M4 cells lowered WNT5a and SNAI1 gene expression down to levels that were observed in BxPC3 cells as well as resulted in an increase in E-cadherin and a decrease in Vimentin signals in mouse tumors when injected orthotopically. These observations suggested a primary role for the epithelial to mesenchymal transformation of cancer cells in CBS-mediated tumor aggressiveness. Under normal conditions, STAT3, an upstream regulator of Wnt signaling pathways, was less phosphorylated and more oxidized in shCBS T3M4 and BxPC3 compared to control T3M4 cells, which is consistent with decreased transcriptional activity at lower CBS levels due to less protection against oxidation. Sulfur metabolome analyses suggested that this CBS-mediated protection against oxidative modifications is likely to be related to persulfide/sulfide producing activities of the enzyme rather than its canonical function to produce cystathionine for cysteine synthesis. Taken together, CBS overexpression through regulation of the EMT plays a significant role in PDAC cancer cell invasion and metastasis.

3.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34737229

RESUMO

Basal-like breast cancer (BLBC) is the most aggressive subtype of breast tumors with poor prognosis and limited molecular-targeted therapy options. We show that BLBC cells have a high Cys demand and reprogrammed Cys metabolism. Patient-derived BLBC tumors from four different cohorts exhibited elevated expression of the transsulfuration enzyme cystathione ß-synthetase (CBS). CBS silencing (shCBS) made BLBC cells less invasive, proliferate slower, more vulnerable to oxidative stress and cystine (CySSCy) deprivation, prone to ferroptosis, and less responsive to HIF1-α activation under hypoxia. shCBS xenograft tumors grew slower than controls and exhibited impaired angiogenesis and larger necrotic areas. Sulfur metabolite profiling suggested that realigned sulfide/persulfide-inducing functions of CBS are important in BLBC tumor progression. Supporting this, the exclusion of serine, a substrate of CBS for producing Cys but not for producing sulfide/persulfide, did not exacerbate CySSCy deprivation-induced ferroptosis in shCBS BLBC cells. Impaired Tyr phosphorylation was detected in shCBS cells and xenografts, likely due to persulfidation-inhibited phosphatase functions. Overexpression of cystathione γ-lyase (CSE), which can also contribute to cellular sulfide/persulfide production, compensated for the loss of CBS activities, and treatment of shCBS xenografts with a CSE inhibitor further blocked tumor growth. Glutathione and protein-Cys levels were not diminished in shCBS cells or xenografts, but levels of Cys persulfidation and the persulfide-catabolizing enzyme ETHE1 were suppressed. Finally, expression of enzymes of the oxidizing Cys catabolism pathway was diminished, but expression of the persulfide-producing CARS2 was elevated in human BLBC tumors. Hence, the persulfide-producing pathways are major targetable determinants of BLBC pathology that could be therapeutically exploited.


Assuntos
Cistationina beta-Sintase/metabolismo , Cisteína/metabolismo , Neoplasias de Mama Triplo Negativas/enzimologia , Animais , Estudos de Coortes , Progressão da Doença , Feminino , Ferroptose , Humanos , Camundongos SCID , Neovascularização Patológica , Estresse Oxidativo , Sulfetos/metabolismo
4.
Redox Biol ; 38: 101800, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271457

RESUMO

Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency are two rare genetic disorders that are caused by impairment of the mitochondrial enzyme sulfite oxidase. Sulfite oxidase is catalyzing the terminal reaction of cellular cysteine catabolism, the oxidation of sulfite to sulfate. Absence of sulfite oxidase leads to the accumulation of sulfite, which has been identified as a cellular toxin. However, the molecular pathways leading to the production of sulfite are still not completely understood. In order to identify novel treatment options for both disorders, the understanding of cellular cysteine catabolism - and its alterations upon loss of sulfite oxidase - is of utmost importance. Here we applied a new detection method of sulfite in cellular extracts to dissect the contribution of cytosolic and mitochondrial glutamate oxaloacetate transaminase (GOT) in the transformation of cysteine sulfinic acid to sulfite and pyruvate. We found that the cytosolic isoform GOT1 is primarily responsible for the production of sulfite. Moreover, loss of sulfite oxidase activity results in the accumulation of sulfite, H2S and persulfidated cysteine and glutathione, which is consistent with an increase of SQR protein levels. Surprisingly, none of the known H2S-producing pathways were found to be upregulated under conditions of sulfite toxicity suggesting an alternative route of sulfite-induced shift from oxidative to H2S dependent cysteine catabolism.


Assuntos
Sulfito Oxidase , Sulfitos , Glutamatos , Oxaloacetatos , Sulfito Oxidase/genética , Transaminases/genética
5.
Eur J Emerg Med ; 28(3): 196-201, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33079737

RESUMO

OBJECTIVE: The objective of the study was to assess the variability in the management of paediatric MHT in European emergency departments (EDs). METHODS: This was a multicentre retrospective study of children ≤18 years old with minor head trauma (MHT) (Glasgow Coma Scale ≥14) who presented to 15 European EDs between 1 January 2013 and 31 December 31. Data on clinical characteristics, imaging tests, and disposition of included patients were collected at each hospital over a 3-year period. RESULTS: We included 11 212 patients. Skull radiography was performed in 3416 (30.5%) patients, range 0.4-92.3%. A computed tomography (CT) was obtained in 696 (6.2%) patients, range 1.6-42.8%. The rate of admission varied from 0 to 48.2%. CONCLUSION: We found great variability in terms of the type of imaging and rate of CT scan obtained. Our study suggests opportunity for improvement in the area of paediatric head injury and the need for targeted individualised ED interventions to improve management of MHT.


Assuntos
Traumatismos Craniocerebrais , Medicina de Emergência Pediátrica , Adolescente , Criança , Traumatismos Craniocerebrais/diagnóstico por imagem , Traumatismos Craniocerebrais/terapia , Serviço Hospitalar de Emergência , Escala de Coma de Glasgow , Humanos , Estudos Retrospectivos
6.
Hepatology ; 71(4): 1391-1407, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31469200

RESUMO

BACKGROUND AND AIMS: Hepatic cardiomyopathy, a special type of heart failure, develops in up to 50% of patients with cirrhosis and is a major determinant of survival. However, there is no reliable model of hepatic cardiomyopathy in mice. We aimed to characterize the detailed hemodynamics of mice with bile duct ligation (BDL)-induced liver fibrosis, by monitoring echocardiography and intracardiac pressure-volume relationships and myocardial structural alterations. Treatment of mice with a selective cannabinoid-2 receptor (CB2 -R) agonist, known to attenuate inflammation and fibrosis, was used to explore the impact of liver inflammation and fibrosis on cardiac function. APPROACH AND RESULTS: BDL induced massive inflammation (increased leukocyte infiltration, inflammatory cytokines, and chemokines), oxidative stress, microvascular dysfunction, and fibrosis in the liver. These pathological changes were accompanied by impaired diastolic, systolic, and macrovascular functions; cardiac inflammation (increased macrophage inflammatory protein 1, interleukin-1, P-selectin, cluster of differentiation 45-positive cells); and oxidative stress (increased malondialdehyde, 3-nitrotyrosine, and nicotinamide adenine dinucleotide phosphate oxidases). CB2 -R up-regulation was observed in both livers and hearts of mice exposed to BDL. CB2 -R activation markedly improved hepatic inflammation, impaired microcirculation, and fibrosis. CB2 -R activation also decreased serum tumor necrosis factor-alpha levels and improved cardiac dysfunction, myocardial inflammation, and oxidative stress, underlining the importance of inflammatory mediators in the pathology of hepatic cardiomyopathy. CONCLUSIONS: We propose BDL-induced cardiomyopathy in mice as a model for hepatic/cirrhotic cardiomyopathy. This cardiomyopathy, similar to cirrhotic cardiomyopathy in humans, is characterized by systemic hypotension and impaired macrovascular and microvascular function accompanied by both systolic and diastolic dysfunction. Our results indicate that the liver-heart inflammatory axis has a pivotal pathophysiological role in the development of hepatic cardiomyopathy. Thus, controlling liver and/or myocardial inflammation (e.g., with selective CB2 -R agonists) may delay or prevent the development of cardiomyopathy in severe liver disease.


Assuntos
Cardiomiopatias/etiologia , Insuficiência Cardíaca/etiologia , Cirrose Hepática/complicações , Receptor CB2 de Canabinoide/metabolismo , Animais , Cardiomiopatias/patologia , Modelos Animais de Doenças , Insuficiência Cardíaca/patologia , Hepatite/metabolismo , Hepatite/patologia , Inflamação/metabolismo , Inflamação/patologia , Fígado , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocardite/metabolismo , Miocardite/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Receptor CB2 de Canabinoide/agonistas , Transdução de Sinais
7.
Free Radic Biol Med ; 152: 540-550, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31770583

RESUMO

STUDY RATIONALE: Hepatorenal syndrome (HRS) is a life-threatening complication of end-stage liver disease characterized by the rapid decline of kidney function. Herein, we explored the therapeutic potential of targeting the cannabinoid-2 receptor (CB2-R) utilizing a commonly used mouse model of liver fibrosis and hepatorenal syndrome (HRS), induced by bile duct ligation (BDL). METHODS: Gene expression analysis, histological evaluation, determination of serum levels of renal injury-biomarkers were used to characterize the BDL-induced organ injury; laser speckle analysis to measure microcirculation in the kidneys. KEY RESULTS: We found that liver injury triggered marked inflammation and oxidative stress in the kidneys of BDL-operated mice. We detected pronounced histopathological alterations with tubular injury paralleled with increased inflammation, oxidative/nitrative stress and fibrotic remodeling both in hepatic and renal tissues as well as endothelial activation and markedly impaired renal microcirculation. This was accompanied by increased CB2-R expression in both the liver and the kidney tissues of diseased animals. A selective CB2-R agonist, HU-910, markedly decreased numerous markers of inflammation, oxidative stress and fibrosis both in the liver and in the kidneys. HU-910 also attenuated markers of kidney injury and improved the impaired renal microcirculation in BDL-operated mice. CONCLUSIONS: Our results suggest that oxidative stress, inflammation and microvascular dysfunction are key events in the pathogenesis of BDL-associated renal failure. Furthermore, we demonstrate that targeting the CB2-R by selective agonists may represent a promising new avenue to treat HRS by attenuating tissue and vascular inflammation, oxidative stress, fibrosis and consequent microcirculatory dysfunction in the kidneys.


Assuntos
Canabinoides , Síndrome Hepatorrenal , Animais , Ductos Biliares/cirurgia , Modelos Animais de Doenças , Síndrome Hepatorrenal/tratamento farmacológico , Síndrome Hepatorrenal/etiologia , Síndrome Hepatorrenal/metabolismo , Fígado/metabolismo , Camundongos , Microcirculação , Estresse Oxidativo , Receptores de Canabinoides/metabolismo
8.
Hepatology ; 68(4): 1519-1533, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29631342

RESUMO

Tubular dysfunction is an important feature of renal injury in hepatorenal syndrome (HRS) in patients with end-stage liver disease. The pathogenesis of kidney injury in HRS is elusive, and there are no clinically relevant rodent models of HRS. We investigated the renal consequences of bile duct ligation (BDL)-induced hepatic and renal injury in mice in vivo by using biochemical assays, real-time polymerase chain reaction (PCR), Western blot, mass spectrometry, histology, and electron microscopy. BDL resulted in time-dependent hepatic injury and hyperammonemia which were paralleled by tubular dilation and tubulointerstitial nephritis with marked upregulation of lipocalin-2, kidney injury molecule 1 (KIM-1) and osteopontin. Renal injury was associated with dramatically impaired microvascular flow and decreased endothelial nitric oxide synthase (eNOS) activity. Gene expression analyses signified proximal tubular epithelial injury, tissue hypoxia, inflammation, and activation of the fibrotic gene program. Marked changes in renal arginine metabolism (upregulation of arginase-2 and downregulation of argininosuccinate synthase 1), resulted in decreased circulating arginine levels. Arginase-2 knockout mice were partially protected from BDL-induced renal injury and had less impairment in microvascular function. In human-cultured proximal tubular epithelial cells hyperammonemia per se induced upregulation of arginase-2 and markers of tubular cell injury. CONCLUSION: We propose that hyperammonemia may contribute to impaired renal arginine metabolism, leading to decreased eNOS activity, impaired microcirculation, tubular cell death, tubulointerstitial nephritis and fibrosis. Genetic deletion of arginase-2 partially restores microcirculation and thereby alleviates tubular injury. We also demonstrate that BDL in mice is an excellent, clinically relevant model to study the renal consequences of HRS. (Hepatology 2018; 00:000-000).


Assuntos
Injúria Renal Aguda/metabolismo , Arginina/metabolismo , Síndrome Hepatorrenal/patologia , Túbulos Renais/patologia , Óxido Nítrico Sintase/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Animais , Biomarcadores/metabolismo , Biópsia por Agulha , Modelos Animais de Doenças , Progressão da Doença , Síndrome Hepatorrenal/mortalidade , Síndrome Hepatorrenal/fisiopatologia , Humanos , Imuno-Histoquímica , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória , Medição de Risco , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Taxa de Sobrevida
9.
Br J Pharmacol ; 175(2): 320-334, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28107775

RESUMO

BACKGROUND AND AIMS: ß-Caryophyllene (BCP) is a plant-derived FDA approved food additive with anti-inflammatory properties. Some of its beneficial effects in vivo are reported to involve activation of cannabinoid CB2 receptors that are predominantly expressed in immune cells. Here, we evaluated the translational potential of BCP using a well-established model of chronic and binge alcohol-induced liver injury. METHODS: In this study, we investigated the effects of BCP on liver injury induced by chronic plus binge alcohol feeding in mice in vivo by using biochemical assays, real-time PCR and histology analyses. Serum and hepatic BCP levels were also determined by GC/MS. RESULTS: Chronic treatment with BCP alleviated the chronic and binge alcohol-induced liver injury and inflammation by attenuating the pro-inflammatory phenotypic `M1` switch of Kupffer cells and by decreasing the expression of vascular adhesion molecules intercellular adhesion molecule 1, E-Selectin and P-Selectin, as well as the neutrophil infiltration. It also beneficially influenced hepatic metabolic dysregulation (steatosis, protein hyperacetylation and PPAR-α signalling). These protective effects of BCP against alcohol-induced liver injury were attenuated in CB2 receptor knockout mice, indicating that the beneficial effects of this natural product in liver injury involve activation of these receptors. Following acute or chronic administration, BCP was detectable both in the serum and liver tissue homogenates but not in the brain. CONCLUSIONS: Given the safety of BCP in humans, this food additive has a high translational potential in treating or preventing hepatic injury associated with oxidative stress, inflammation and steatosis. LINKED ARTICLES: This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Etanol/toxicidade , Fígado Gorduroso/tratamento farmacológico , Inflamação/tratamento farmacológico , Sesquiterpenos/uso terapêutico , Acetilação/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Selectina E/biossíntese , Etanol/farmacocinética , Fígado Gorduroso/induzido quimicamente , Molécula 1 de Adesão Intercelular/biossíntese , Células de Kupffer/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/efeitos dos fármacos , Selectina-P/biossíntese , PPAR alfa/metabolismo , Sesquiterpenos Policíclicos , Receptor CB2 de Canabinoide/genética , Sesquiterpenos/sangue , Sesquiterpenos/farmacocinética
10.
J Med Chem ; 60(3): 1126-1141, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28085283

RESUMO

We report the design, synthesis, and structure-activity relationships of novel dual-target compounds with antagonist/inverse agonist activity at cannabinoid receptor type 1 (CB1R) and inhibitory effect on inducible nitric oxide synthase (iNOS). A series of 3,4-diarylpyrazolinecarboximidamides were synthesized and evaluated in CB1 receptor (CB1R) binding assays and iNOS activity assays. The novel compounds, designed to have limited brain penetrance, elicited potent in vitro CB1R antagonist activities and iNOS inhibitory activities. Some key compounds displayed high CB1R binding affinities. Compound 7 demonstrated potent in vivo pharmacological activities such as reduction of food intake mediated by the antagonism of the CB1Rs and antifibrotic effect in the animal models of fibrosis mediated by iNOS inhibition and CB1R antagonism.


Assuntos
Encéfalo/metabolismo , Inibidores Enzimáticos/metabolismo , Cirrose Hepática/tratamento farmacológico , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Receptor CB1 de Canabinoide/antagonistas & inibidores , Animais , Células CHO , Cricetinae , Cricetulus , Desenho de Fármacos , Humanos , Camundongos , Relação Estrutura-Atividade
11.
JCI Insight ; 1(11)2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27525312

RESUMO

Liver fibrosis, a consequence of chronic liver injury and a way station to cirrhosis and hepatocellular carcinoma, lacks effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) induce profibrotic gene expression and promote pathologies that predispose to liver fibrosis. CB1R antagonists produce opposite effects, but their therapeutic development was halted due to neuropsychiatric side effects. Inducible nitric oxide synthase (iNOS) also promotes liver fibrosis and its underlying pathologies, but iNOS inhibitors tested to date showed limited therapeutic efficacy in inflammatory diseases. Here, we introduce a peripherally restricted, orally bioavailable CB1R antagonist, which accumulates in liver to release an iNOS inhibitory leaving group. In mouse models of fibrosis induced by CCl4 or bile duct ligation, the hybrid CB1R/iNOS antagonist surpassed the antifibrotic efficacy of the CB1R antagonist rimonabant or the iNOS inhibitor 1400W, without inducing anxiety-like behaviors or CB1R occupancy in the CNS. The hybrid inhibitor also targeted CB1R-independent, iNOS-mediated profibrotic pathways, including increased PDGF, Nlrp3/Asc3, and integrin αvß6 signaling, as judged by its ability to inhibit these pathways in cnr1-/- but not in nos2-/- mice. Additionally, it was able to slow fibrosis progression and to attenuate established fibrosis. Thus, dual-target peripheral CB1R/iNOS antagonists have therapeutic potential in liver fibrosis.

12.
Am J Physiol Heart Circ Physiol ; 310(11): H1658-70, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27106042

RESUMO

Alcoholic cardiomyopathy in humans develops in response to chronic excessive alcohol consumption; however, good models of alcohol-induced cardiomyopathy in mice are lacking. Herein we describe mouse models of alcoholic cardiomyopathies induced by chronic and binge ethanol (EtOH) feeding and characterize detailed hemodynamic alterations, mitochondrial function, and redox signaling in these models. Mice were fed a liquid diet containing 5% EtOH for 10, 20, and 40 days (d) combined with single or multiple EtOH binges (5 g/kg body wt). Isocalorically pair-fed mice served as controls. Left ventricular (LV) function and morphology were assessed by invasive pressure-volume conductance approach and by echocardiography. Mitochondrial complex (I, II, IV) activities, 3-nitrotyrosine (3-NT) levels, gene expression of markers of oxidative stress (gp91phox, p47phox), mitochondrial biogenesis (PGC1α, peroxisome proliferator-activated receptor α), and fibrosis were examined. Cardiac steatosis and fibrosis were investigated by histological/immunohistochemical methods. Chronic and binge EtOH feeding (already in 10 days EtOH plus single binge group) was characterized by contractile dysfunction (decreased slope of end-systolic pressure-volume relationship and preload recruitable stroke work), impaired relaxation (decreased time constant of LV pressure decay and maximal slope of systolic pressure decrement), and vascular dysfunction (impaired arterial elastance and lower total peripheral resistance). This was accompanied by enhanced myocardial oxidative/nitrative stress (3-NT; gp91phox; p47phox; angiotensin II receptor, type 1a) and deterioration of mitochondrial complex I, II, IV activities and mitochondrial biogenesis, excessive cardiac steatosis, and higher mortality. Collectively, chronic plus binge EtOH feeding in mice leads to alcohol-induced cardiomyopathies (National Institute on Alcohol Abuse and Alcoholism models) characterized by increased myocardial oxidative/nitrative stress, impaired mitochondrial function and biogenesis, and enhanced cardiac steatosis.


Assuntos
Tecido Adiposo/metabolismo , Cardiomiopatia Alcoólica/metabolismo , Etanol/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Disfunção Ventricular Esquerda/metabolismo , Tecido Adiposo/patologia , Tecido Adiposo/fisiopatologia , Animais , Cardiomiopatia Alcoólica/patologia , Cardiomiopatia Alcoólica/fisiopatologia , Modelos Animais de Doenças , Esquema de Medicação , Hemodinâmica/fisiologia , Camundongos , Mitocôndrias/metabolismo , Biogênese de Organelas , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
13.
Mol Med ; 22: 136-146, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26772776

RESUMO

Myocarditis is a major cause of heart failure and sudden cardiac death in young adults and adolescents. Many cases of myocarditis are associated with autoimmune processes in which cardiac myosin is a major autoantigen. Conventional immunosuppressive therapies often provide unsatisfactory results and are associated with adverse toxicities during the treatment of autoimmune myocarditis. Cannabidiol (CBD) is a nonpsychoactive constituent of marijuana that exerts antiinflammatory effects independent of classical cannabinoid receptors. Recently, 80 clinical trials have investigated the effects of CBD in various diseases from inflammatory bowel disease to graft versus host disease. CBD-based formulations are used for the management of multiple sclerosis in numerous countries, and CBD also received U.S. Food and Drug Administration approval for the treatment of refractory childhood epilepsy and glioblastoma multiforme. Herein, using a well-established mouse model of experimental autoimmune myocarditis (EAM) induced by immunization with cardiac myosin emmulsified in adjuvant resulting in T cell-mediated inflammation, cardiomyocyte cell death, fibrosis and myocardial dysfunction, we studied the potential beneficial effects of CBD. EAM was characterized by marked myocardial T-cell infiltration, profound inflammatory response and fibrosis (measured by quantitative real-time polymerase chain reaction, histology and immunohistochemistry analyses) accompanied by marked attenuation of both systolic and diastolic cardiac functions measured with a pressure-volume conductance catheter technique. Chronic treatment with CBD largely attenuated the CD3+ and CD4+ T cell-mediated inflammatory response and injury, myocardial fibrosis and cardiac dysfunction in mice. In conclusion, CBD may represent a promising novel treatment for managing autoimmune myocarditis and possibly other autoimmune disorders and organ transplantation.

14.
Br J Pharmacol ; 173(3): 446-58, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26398481

RESUMO

BACKGROUND AND PURPOSE: Here, we have characterized 3-cyclopropyl-1-(4-(6-((1,1-dioxidothiomorpholino)methyl)-5-fluoropyridin-2-yl)benzyl)imidazolidine-2,4-dione hydrochloride (LEI-101) as a novel, peripherally restricted cannabinoid CB2 receptor agonist, using both in vitro and in vivo models. EXPERIMENTAL APPROACH: We investigated the effects of LEI-101 on binding and functional activity. We assessed its in vitro and in vivo selectivity. Efficacy of LEI-101 was determined in a mouse model of cisplatin-induced nephrotoxicity. KEY RESULTS: LEI-101 behaved as a partial agonist at CB2 receptors using ß-arrestin and GTPγS assays and was ~100-fold selective in CB2 /CB1 receptor-binding assays. It did not display any activity on endocannabinoid hydrolases and nor did it react with serine hydrolases in an activity-based protein profiling assay. In mice, LEI-101 had excellent oral bioavailability reaching high concentrations in the kidney and liver with minimal penetration into the brain. LEI-101 up to a dose of 60 mg·kg(-1) (p.o.) did not exert any CNS-mediated effects in the tetrad assay, in mice. LEI-101 (p.o. or i.p.) at 3 or 10 mg·kg(-1) dose-dependently prevented kidney dysfunction and/or morphological damage induced by cisplatin in mice. These protective effects were associated with improved renal histopathology, attenuated oxidative stress and inflammation in the kidney. These effects were absent in CB2 receptor knockout mice. CONCLUSION AND IMPLICATIONS: These results indicate that LEI-101 is a selective, largely peripherally restricted, orally available CB2 receptor agonist with therapeutic potential in diseases that are associated with inflammation and/or oxidative stress, including kidney disease.


Assuntos
Imidazolidinas/farmacologia , Nefropatias/tratamento farmacológico , Morfolinas/farmacologia , Substâncias Protetoras/uso terapêutico , Receptor CB2 de Canabinoide/agonistas , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Células CHO , Cisplatino/efeitos adversos , Cricetulus , Fragmentação do DNA , Imidazolidinas/química , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Morfolinas/química , Substâncias Protetoras/farmacocinética , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptor CB2 de Canabinoide/genética
15.
Am J Respir Cell Mol Biol ; 53(4): 555-62, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26426981

RESUMO

Radiation-induced pulmonary fibrosis (RIF) is a severe complication of thoracic radiotherapy that limits its dose, intensity, and duration. The contribution of the endocannabinoid signaling system in pulmonary fibrogenesis is not known. Using a well-established mouse model of RIF, we assessed the involvement of cannabinoid receptor-1 (CB1) in the onset and progression of pulmonary fibrosis. Female C57BL/6 mice and CB1 knockout mice generated on C57BL/6 background received 20 Gy (2 Gy/min) single-dose thoracic irradiation that resulted in pulmonary fibrosis and animal death within 15 to 18 weeks. Some C57BL/6 animals received the CB1 peripherally restricted antagonist AM6545 at 1 mg/kg intraperitoneally three times per week. Animal survival and parameters of pulmonary inflammation and fibrosis were evaluated. Thoracic irradiation (20 Gy) was associated with marked pulmonary inflammation and fibrosis in mice and high mortality within 15 to 18 weeks after exposure. Genetic deletion or pharmacological inhibition of CB1 receptors with a peripheral CB1 antagonist AM6545 markedly attenuated or delayed the lung inflammation and fibrosis and increased animal survival. Our results show that CB1 signaling plays a key pathological role in the development of radiation-induced pulmonary inflammation and fibrosis, and peripherally restricted CB1 antagonists may represent a novel therapeutic approach against this devastating complication of radiotherapy/irradiation.


Assuntos
Morfolinas/farmacologia , Fibrose Pulmonar/prevenção & controle , Pirazóis/farmacologia , Lesões Experimentais por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Deleção de Genes , Camundongos Endogâmicos C57BL , Morfolinas/uso terapêutico , Fibrose Pulmonar/metabolismo , Pirazóis/uso terapêutico , Lesões Experimentais por Radiação/metabolismo , Tolerância a Radiação , Protetores contra Radiação/uso terapêutico , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo
16.
Mol Med ; 21(1): 666-675, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26322851

RESUMO

The classical role of hemoglobin in the erythrocytes is to carry oxygen from the lungs to the tissues via the circulation. However, hemoglobin also acts as a redox regulator and as a scavenger of the gaseous mediators nitric oxide (NO) and hydrogen sulfide (H2S). Here we show that upregulation of hemoglobin (α, ß and δ variants of globin proteins) occurs in human peripheral blood mononuclear cells (PBMCs) in critical illness (patients with severe third-degree burn injury and patients with sepsis). The increase in intracellular hemoglobin concentration is a result of a combination of enhanced protein expression and uptake from the extra-cellular space via a CD163-dependent mechanism. Intracellular hemoglobin preferentially localizes to the mitochondria, where it interacts with complex I and, on the one hand, increases mitochondrial respiratory rate and mitochondrial membrane potential, and on the other hand, protects from H2O2-induced cytotoxicity and mitochondrial DNA damage. Both burn injury and sepsis were associated with increased plasma levels of H2S. Incubation of mononuclear cells with H2S induced hemoglobin mRNA upregulation in PBMCs in vitro. Intracellular hemoglobin upregulation conferred a protective effect against cell dysfunction elicited by H2S. Hemoglobin uptake also was associated with a protection from, and induced the upregulation of, HIF-1α and Nrf2 mRNA. In conclusion, PBMCs in critical illness upregulate their intracellular hemoglobin levels by a combination of active synthesis and uptake from the extracellular medium. We propose that this process serves as a defense mechanism protecting the cell against cytotoxic concentrations of H2S and other gaseous transmitters, oxidants and free radicals produced in critically ill patients.

17.
FASEB J ; 29(9): 3626-37, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26060214

RESUMO

Extracellular ATP binds to and signals through P2X7 receptors (P2X7Rs) to modulate immune function in both inflammasome-dependent and -independent manners. In this study, P2X7(-/-) mice, the pharmacological agonists ATP-magnesium salt (Mg-ATP; 100 mg/kg, EC50 ≈ 1.32 mM) and benzoylbenzoyl-ATP (Bz-ATP; 10 mg/kg, EC50 ≈ 285 µM), and antagonist oxidized ATP (oxi-ATP; 40 mg/kg, IC50 ≈ 100 µM) were used to show that P2X7R activation is crucial for the control of mortality, bacterial dissemination, and inflammation in cecal ligation and puncture-induced polymicrobial sepsis in mice. Our results with P2X7(-/-) bone marrow chimeric mice, adoptive transfer of peritoneal macrophages, and myeloid-specific P2X7(-/-) mice indicate that P2X7R signaling on macrophages is essential for the protective effect of P2X7Rs. P2X7R signaling protects through enhancing bacterial killing by macrophages, which is independent of the inflammasome. By using the connexin (Cx) channel inhibitor Gap27 (0.1 mg/kg, IC50 ≈ 0.25 µM) and pannexin channel inhibitor probenecid (10 mg/kg, IC50 ≈ 11.7 µM), we showed that ATP release through Cx is important for inhibiting inflammation and bacterial burden. In summary, targeting P2X7Rs provides a new opportunity for harnessing an endogenous protective immune mechanism in the treatment of sepsis.


Assuntos
Trifosfato de Adenosina/imunologia , Macrófagos/imunologia , Receptores Purinérgicos P2X7/imunologia , Sepse/imunologia , Transdução de Sinais/imunologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/genética , Transferência Adotiva , Animais , Bactérias/imunologia , Inflamassomos/genética , Inflamassomos/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Receptores Purinérgicos P2X7/genética , Sepse/genética , Sepse/microbiologia , Sepse/patologia , Transdução de Sinais/genética
18.
PLoS One ; 10(6): e0127090, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26086199

RESUMO

Chronic renal fibrosis is the final common pathway of end stage renal disease caused by glomerular or tubular pathologies. Genetic background has a strong influence on the progression of chronic renal fibrosis. We recently found that Rowett black hooded rats were resistant to renal fibrosis. We aimed to investigate the role of sustained inflammation and oxidative/nitrative stress in renal fibrosis progression using this new model. Our previous data suggested the involvement of podocytes, thus we investigated renal fibrosis initiated by doxorubicin-induced (5 mg/kg) podocyte damage. Doxorubicin induced progressive glomerular sclerosis followed by increasing proteinuria and reduced bodyweight gain in fibrosis-sensitive, Charles Dawley rats during an 8-week long observation period. In comparison, the fibrosis-resistant, Rowett black hooded rats had longer survival, milder proteinuria and reduced tubular damage as assessed by neutrophil gelatinase-associated lipocalin (NGAL) excretion, reduced loss of the slit diaphragm protein, nephrin, less glomerulosclerosis, tubulointerstitial fibrosis and matrix deposition assessed by periodic acid-Schiff, Picro-Sirius-red staining and fibronectin immunostaining. Less fibrosis was associated with reduced profibrotic transforming growth factor-beta, (TGF-ß1) connective tissue growth factor (CTGF), and collagen type I alpha 1 (COL-1a1) mRNA levels. Milder inflammation demonstrated by histology was confirmed by less monocyte chemotactic protein 1 (MCP-1) mRNA. As a consequence of less inflammation, less oxidative and nitrative stress was obvious by less neutrophil cytosolic factor 1 (p47phox) and NADPH oxidase-2 (p91phox) mRNA. Reduced oxidative enzyme expression was accompanied by less lipid peroxidation as demonstrated by 4-hydroxynonenal (HNE) and less protein nitrosylation demonstrated by nitrotyrosine (NT) immunohistochemistry and quantified by Western blot. Our results demonstrate that mediators of fibrosis, inflammation and oxidative/nitrative stress were suppressed in doxorubicin nephropathy in fibrosis-resistant Rowett black hooded rats underlying the importance of these pathomechanisms in the progression of renal fibrosis initiated by glomerular podocyte damage.


Assuntos
Progressão da Doença , Resistência à Doença , Doxorrubicina/toxicidade , Rim/metabolismo , Rim/patologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Nitrogênio/metabolismo , Aldeídos/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Quimiocina CCL2/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Relação Dose-Resposta a Droga , Fibrose , Rim/efeitos dos fármacos , Masculino , Proteínas de Membrana/genética , Proteinúria/complicações , Ratos , Especificidade da Espécie , Fator de Crescimento Transformador beta1/genética , Tirosina/análogos & derivados , Tirosina/metabolismo
19.
Mol Med ; 21: 38-45, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25569804

RESUMO

Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Canabidiol/farmacologia , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiotônicos/farmacologia , Doxorrubicina/efeitos adversos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Animais , Canabidiol/administração & dosagem , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Cardiotônicos/administração & dosagem , Cardiotoxicidade , Morte Celular , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Hemodinâmica , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos
20.
FASEB J ; 29(1): 25-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25318479

RESUMO

Sepsis remains the leading cause of morbidity and mortality in critically ill patients. Excessive inflammation is a major cause of organ failure and mortality in sepsis. Ectonucleoside triphosphate diphosphohydrolase 1, ENTPDase1 (CD39) is a cell surface nucleotide-metabolizing enzyme, which degrades the extracellular purines ATP and ADP, thereby regulating purinergic receptor signaling. Although the role of purinergic receptor signaling in regulating inflammation and sepsis has been addressed previously, the role of CD39 in regulating the host's response to sepsis is unknown. We found that the CD39 mimic apyrase (250 U/kg) decreased and knockout or pharmacologic blockade with sodium polyoxotungstate (5 mg/kg; IC50 ≈ 10 µM) of CD39 increased mortality of mice with polymicrobial sepsis induced by cecal ligation and puncture. CD39 decreased inflammation, organ damage, immune cell apoptosis, and bacterial load. Use of bone marrow chimeric mice revealed that CD39 expression on myeloid cells decreases inflammation in septic mice. CD39 expression is upregulated during sepsis in mice, as well as in both murine and human macrophages stimulated with Escherichia coli. Moreover, E. coli increases CD39 promoter activity in macrophages. Altogether, these data indicate CD39 as an evolutionarily conserved inducible protective pathway during sepsis. We propose CD39 as a novel therapeutic target in the management of sepsis.


Assuntos
Antígenos CD/metabolismo , Apirase/metabolismo , Inflamação/prevenção & controle , Sepse/metabolismo , 5'-Nucleotidase/metabolismo , Animais , Antígenos CD/genética , Apirase/deficiência , Apirase/genética , Quimiocinas/metabolismo , Citocinas/metabolismo , Escherichia coli/patogenicidade , Humanos , Inflamação/metabolismo , Interleucina-10/biossíntese , Interleucina-12/biossíntese , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas , Sepse/microbiologia , Quimeras de Transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...