Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(16): 161604, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38701468

RESUMO

We consider Majorana lattices with two-site interactions consisting of a general function of the fermion bilinear. The models are exactly solvable in the limit of a large number of on-site fermions. The four-site chain exhibits a quantum phase transition controlled by the hopping parameters and manifests itself in a discontinuous entanglement entropy, obtained by constraining the one-sided modular Hamiltonian. Inspired by recent work within the AdS/CFT correspondence, we identify transitions between types of von Neumann operator algebras throughout the phase diagram. We find transitions of the form II_{1}↔III↔I_{∞} that reduce to II_{1}↔I_{∞} in the strongly interacting limit, where they connect nonfactorized and factorized ground states. Our results provide novel realizations of such transitions in a controlled many-body model.

2.
Phys Rev Lett ; 130(9): 091604, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930928

RESUMO

We establish how the Breitenlohner-Freedman (BF) bound is realized on tilings of two-dimensional Euclidean Anti-de Sitter space. For the continuum, the BF bound states that on Anti-de Sitter spaces, fluctuation modes remain stable for small negative mass squared m^{2}. This follows from a real and positive total energy of the gravitational system. For finite cutoff ϵ, we solve the Klein-Gordon equation numerically on regular hyperbolic tilings. When ϵ→0, we find that the continuum BF bound is approached in a manner independent of the tiling. We confirm these results via simulations of a hyperbolic electric circuit. Moreover, we propose a novel circuit including active elements that allows us to further scan values of m^{2} above the BF bound.

3.
Phys Rev Lett ; 126(7): 071602, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33666463

RESUMO

We provide gauge/gravity dual descriptions of explicit realizations of the strong coupling sector of composite Higgs models using insights from nonconformal examples of the AdS/CFT correspondence. We calculate particle masses and pion decay constants for proposed Sp(4) and SU(4) gauge theories, where there is the best lattice data for comparison. Our results compare favorably to lattice studies and go beyond those due to a greater flexibility in choosing the fermion content. That content changes the running dynamics and its choice can lead to sizable changes in the bound state masses. We describe top partners by a dual fermionic field in the bulk. Including suitable higher dimension operators can ensure a top mass consistent with the standard model.

4.
Nat Commun ; 11(1): 3997, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778647

RESUMO

A current challenge in condensed matter physics is the realization of strongly correlated, viscous electron fluids. These fluids can be described by holography, that is, by mapping them onto a weakly curved gravitational theory via gauge/gravity duality. The canonical system considered for realizations has been graphene. In this work, we show that Kagome systems with electron fillings adjusted to the Dirac nodes provide a much more compelling platform for realizations of viscous electron fluids, including non-linear effects such as turbulence. In particular, we find that in Scandium Herbertsmithite, the fine-structure constant, which measures the effective Coulomb interaction, is enhanced by a factor of about 3.2 as compared to graphene. We employ holography to estimate the ratio of the shear viscosity over the entropy density in Sc-Herbertsmithite, and find it about three times smaller than in graphene. These findings put the turbulent flow regime described by holography within the reach of experiments.

5.
Phys Rev Lett ; 121(22): 226604, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30547657

RESUMO

We study Josephson junctions based on inversion-asymmetric but time-reversal symmetric Weyl semimetals under the influence of Zeeman fields. We find that, due to distinct spin textures, the Weyl nodes of opposite chirality respond differently to an external magnetic field. Remarkably, a Zeeman field perpendicular to the junction direction results in a phase shift of opposite sign in the current-phase relations of opposite chirality. This leads to a finite chirality Josephson current (CJC) even in the absence of a phase difference across the junction. This feature could allow for applications in chiralitytronics. In the long junction and zero temperature limit, the CJC embodies a novel quantum anomaly of Goldstone bosons at π phase difference which is associated with a Z_{2} symmetry at low energies. It can be detected experimentally via an anomalous Fraunhofer pattern.

6.
Phys Rev Lett ; 98(26): 261301, 2007 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-17678078

RESUMO

Using a novel, string theory-inspired formalism based on a Hamiltonian constraint, we obtain a conformal mechanical system for the spatially flat four-dimensional Robertson-Walker Universe. Depending on parameter choices, this system describes either a relativistic particle in the Robertson-Walker background or metric fluctuations of the Robertson-Walker geometry. Moreover, we derive a tree-level M theory matrix model in this time-dependent background. Imposing the Hamiltonian constraint forces the spacetime geometry to be fuzzy near the big bang, while the classical Robertson-Walker geometry emerges as the Universe expands. From our approach, we also derive the temperature of the Universe interpolating between the radiation and matter dominated eras.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...